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Abstract—Efficient operation of wireless networks and switches settings of wireless networks and input-queued switches, (e
requires using simple (and in some cases distributed) schelihg  [1], [9], [22]). However, algorithms based on [27] requiteet
algorithms. In general, simple greedy algorithms (known as a5aated solution of global optimization problegrtaking into

Greedy Maximal Scheduling - GMS) are guaranteed to achieve t th backl f link. E |
only a fraction of the maximum possible throughput (e.g.,50% account the queue backlog o every link. For examplie, even

throughput in switches). However, it was recently shown thain ~ under simple primary interference constratnta maximum
networks in which the Local Pooling conditions are satisfied, GMS weight matching problem has to be solved in every slot,
achieves100% throughput. Moreover, in networks in which the  requiring anO(n3) algorithm.

o-Local Pooling conditions hold, GMS achievesr% throughput. Hence, there has been an increasing interest in simple

In this paper, we focus on identifying the specific network . C . .
topologies that satisfy these conditions. In particular, ve provide (Potentially distributed) algorithms. One such algoritienthe

the first characterization of all the network graphs in which ~Greedy Maximal SchedulinGMS) algorithm (also termed
Local Pooling holds under primary interference constraints (in  Maximal Weight Scheduling or Longest Queue First - LQF).
these networks GMS achieves00% throughput). This leads to  Thjs algorithm selects the set of served links greedily eco

a linear time algorithm for identifying Local Pooling-satisfying ing to the queue lengths [12], [20]. Namely, at each step, the

graphs. Moreover, by using similar graph theoretical methals, . . . . '
we show thatin all bipartite graphs (i.e., input-queued switches) algorithm selects the heaviest link (i.e., with longest wpie

of size up to 7 x n, GMS is guaranteed to achieve 66% throughput, ~ Size), and removes it and the links with which it interferes
thereby improving upon the previously known 50% lower bound.  from the list of candidate links. The algorithm terminatesan
Finally, we study the performance of GMS in interference graohs  there are no more candidate links. Such an algorithm can be

and show that in certain specific topologies its performance : et
could be very bad. Overall, the paper demonstrates that usig implemented in a distributed manner [12], [17], [18].

graph theoretical techniques can significantly contributeto our It was shown that the GMS algorithm is guaranteed to

understanding of greedy scheduling algorithms. achieve 50% throughput in switches [7] and in general graphs
Index Terms—Local pooling, scheduling, throughput maxi- under primary interference constraints [20]. It also wasvpd

mization, graph theory, wireless networks, switches. in [4], [25], [29] that under secondary interference coaistis?

the throughput obtained by GMS may be significantly lower
) ) } o than the throughput under a centralized scheduler.

The effective operation of wireless and wireline networks ajthough inarbitrary topologieshe worst case performance
relle_s on the proper solution qf the packet scheduling @bl o GMS can be very low, there are some topologies in
In wireless networks, the main challenge stems from the negflich 100% throughput is achievedParticularly, Dimakis
for a decentralized solution to a centralized problem. Evefg walrand [8] presented sufficient conditions for GMS to
when centralized processing is possible, as is the caseut-in provide 100% throughput. These conditions are referredsto a
queued switches, designing low complexity algorithms th@hcal Pooling (LoP) and are related to the structure of the
will enable efficient operation is a major challenge. network. Based on these conditions, it was shown that GMS

A centralized joint routing and scheduling policy thagchieves maximum throughput in tree network graphs under
achieves the maximum attainable throughput region was pyenop interference (for any) [16], [30], in 2 x n switches
sented by Tassiulas and Ephremides [27]. That policy appli&] and in a number of interference graph classes [30].
to a multihop network with a stochastic packet arrival ps®ce  The LoP conditions were recently generalized to provide
and is guaranteed to stabilize the network whenever thearri

rates are within the Stablllty region (l'e" it prO\”deS %)0 IPrimary interference constraints imply that each pair ofidianeously
throughput). The results of [27] have been extended to uaricactive links must be separated by at least one hop (i.e. ehefsactive links
at any point of time constitutes a matching).
This work was partially supported by NSF grants DMS-075886d CNS- 2Secondary interference constraints imply that each pagirnfiltaneously
0916263, CIAN NSF ERC under grant EEC-0812072, FNR grantPLIR  active links must be separated by at least two hops (links¢s& constraints
BFR08-17, and ONR grant N00014-01-1-0608. are usually used to model IEEE 802.11 networks [4].

I. INTRODUCTION



the o-Local Pooling ¢-LoP) conditions under which GMS this provides an important insight regarding graphs in Whic
achievess% throughput [15], [16] (the conditions were refor-GMS may have bad performance. We conclude with briefly
mulated in [19]). Using these conditions, lower bounds an tldescribing a simulation study that compares the performanc
guaranteed throughput in geometric graphs [16] and in grapdf GMS to the optimal algorithm in graphs with low.
under secondary interference constraints [18] were obthin  To conclude, the main contributions of this paper are two-
From a practical point of view, identifying graphs thafold: (i) a characterization ofll network graphs in which
satisfy LoP andr-LoP can provide important building blocksLocal Pooling holds under primary interference constga{int
for partitioning a network (e.g., via channel allocationjoi these network graphs Greedy Maximal Scheduling is guaran-
subnetworks in which GMS performs well [3]. Another posteed to achieve 100% throughput) and (ii) improved lower
sible application is to add artificial interference constt®ito bounds on the throughput performance of Greedy Maximal
a graph that does not satisfy the LoP conditions in order 8cheduling in small switches. Overall, the paper demotestra
turn it into a LoP-satisfying graph. Adding such constrainthat using graph theoretical techniques can significarily- ¢
may decrease the stability region but would enable GMS tdbute to our understanding of greedy scheduling algorith
achieve a large portion of the new stability region. This paper is organized as follows. In Section Il we present
While it is known that under primary interference someéhe model. We characterize all graphs that satisfy LoP under
graph families (mainly trees aritix n bipartite graphs) satisfy primary interference constraints in Section Ill. In Sewtiy/
LoP, the exact structure of networks that satisfy LoP was n@e show that GMS achieves 66% throughput in switches
characterized. In this paper, we use graph theoretic msthedth up to 7 inputs. We study the performance of GMS in
to obtain the structure ofall the network graphs that satisfyinterference graphs in Section V and we conclude and discuss
LoP under primary interference constrair(ia these networks open problems in Section VI.
GMS achieves 100% throughput). This allows us to develop an
algorithm that checks if a network graph satisfies LoP in time [I. MODEL AND PRELIMINARIES

linear in the number of vertices, significantly improvingeov |, this section, we first present the network model under
any other known method. We note that although primary intefzimary interference and then extend it for general interfe
ference constraints may not hold in many wireless netwgrkigce. We also provide some graph theoretic definitions and

technologies, the characterization provides an imporla@t gerive results for graphs that exhibit certain symmetry.
oretical understanding regarding the performance of mpl

greedy algorithms. It also shows that thex n switch is the A. Network Graphs
largest switch for which 100% throughput is guaranteed. . - -
We then focus on graphs in which GMS does not achie Consider anetwork graphG: = (V. ), where V' =

100% throughout. We consider bipartite network graphs, (i.g‘?’ -, n}isthe setof nodes, anll C {ij : 4,j € V,i # j} is
) ) e a set of links indicating pairs of nodes between which data flo
input-queued switches) and show tHat bipartite graphs

of size k x n, where k < 7 and n is arbitrary, GMS can occur. Following the model of [3], [8], [15], [27], assam

achieves at least 66% throughpiMamely, for switches with that time is _s_lotted an_d that packets are of equal size, each
. acket requiring one time slot of service across a link. The
up to 7 inputs or 7 outputs, the throughput under GMS [s . . ) . )
model considers only single-hop traffic. A queue is assediat

0 o .
bounded from below by 66%. This significantly IMProVves UPOlluy each edge in the network. We assume that the stochastic
the well known 50% lower bound [7] and confirms man

simulation studies (e.g., [10]) in which it was shown tha rrivals to edge; have long term rates;; and are independent

greedy algorithms perform relatively well in switches. Tow of each other. We Qenote by the vegtor of the_ arrival rates
that this result does not extend to all bipartite graphs, kaswvs Aij fof every edgeij. For more details regarding the queue
that there exists a0 x 10 bipartite graph for whichr = 0.6. evolution process under this model, see [.3]’ [8]’ [15]
Finally, we consider interference gragtad categorize dif- For a graphG, let M(G) be a 0-1.matr|x W'th!E| FOWS,
ferent graph families according to theirvalues. In particular, whose columns represent the maximal matchingsGofA

we show that all co-strongly perfect graphs satisfy LoPsThTQfCthlljI'tng a(ljg(t)nthrrsgtlects aks?t of e:ihges to gxctwatgat eat(;]h
class encapsulates all the classes of perfect LoP-satj;sfmee slot and transmits packets on those edges. since they
must not interfere under primary interference constraithts

interference graphs that were identified before (i.e., dalor . .
graphs, interference graphs of trees, etc.). The observat?elemm edges form a matching. In other words, the schregduli
’ ' orithm picks a columnr(t) from the maximal matching

increases the number of graphs known to satisfy LoP by a

order of magnitude. RegardingLoP we show that there aremamXM(G) at every time slot. If wg(t) = 1, one of the two

graphs with arbitrarily lowo. Since the worst case specificnOdes along edge; can transmit, and the associated queue is

graph identified up to now had — 0.6 [15] and the lowest dec_reased by one. We define thtability region(or capacity
| bound k f h famil 1/6 [16], [18 ,reglon) of a network as follows.
ower bound known for a graph family was 16 [16], [18], “p 6 Lo 51 (stability region [27]):The stability region

3Although it has been recently shown that in some cases teeféntnce  Of @ networkG is defined by
graph does not fully capture the wireless interference adtaristics [23], it

still provides a reasonable abstraction. Extending thelteto general SINR- A = {X |)_\' < @ for somed € CO(M(G)) }
based constraints is a subject for further research. )



where Co(M(G)) is the convex hull of the columns of We say that a graph satisfiesOLoP, if all of its subgraphs
M(G) (inequality operators are taken element-wise when theiatisfy o-SLoP. We can then define the local pooling factor of
operands are vectors). a graph as follows:

A stable scheduling algorithm (which we also refer to as Definition 2.5 (Joo et. al. [15]): The local pooling factor
a throughput-optimaklgorithm or an algorithm thachieves o*(G) of a network graphG is the largest value ot for
100% throughpu} is defined as an algorithm for which thewhich o-SLoP is satisfied for all subgraphs
Markov chain that represents the evolution of the queuesTiis definition can also be written in terms ofS):
positive recurrent for all arrivalsx € A*. It was shown in . )
[27] that the Maximum Weight Matching algorithm that setect ¢ (¢) := min {o(5) | for all subgraphsS of G}.  (3)
the matching with the largest total queue sizes at each sloit was proved in [15] that the local pooling facter of
is stable. When an algorithm is not throughput-optimal, the graph is equal to the efficiency ratig of GMS in that
efficiency ratiOy indicates the fraction of the stability regiongraph For instance, if a graph has a local- poo“ng factor of
for which the algorithm is stable (in simple words, the queue /3, GMS is stable for all arrival rates € 2A* and therefore

are bounded for all arrival rate € y*A*). achieves66% throughput. Note that*(G) = 1, if and only
We briefly reproduce the definitions of Local Pooling (LoP)¥ (¢ satisfies the OLoP condition.

presented in [3], [8F. In the following, e denotes the vector
having each entry equal to one. B. Interference Graphs

Definition 2.2 (Subgraph Local Pooling - SLoP): A net- We now generalize the model by introducing interference
work graphG satisfies SLoP, if there exists € [0, 1]/”! such graphs. Based on the network graph and the interference

thata”’ M(G) = e”. constraints, the interference between network links can be
This definition also corresponds to associating a weiglhodeled by aninterference graph(or a conflict graph)
denoteda(e), to all edges € E, such that G; = (V1, Er) [14]. We assignV; = E. Thus, each edge

er In the network graph is represented by a nagein

>_al(e) =1 for every maximal matching in G. the interference graph, and an edge; in the interference

eeZ graph indicates a conflict between network graph lirks
If a vectora satisfies the above condition, we will say that iind e; (i.e., transmissions or; and e; cannot take place
is agood edge weighting simultaneously). Under primary interference, the intenfice

Definition 2.3 (Overall Local Pooling - OLoP): A net-graphG; corresponds to théne graphof G.
work graph G satisfies OLoP, if every subgrapfi of G The model and the LoP theory described so far extend to
satisfies SLoP. interference graphs. The nodes @f correspond to queues

In [8], Dimakis and Walrand proved that if a graph satisfie® which packets arrive according to a stochastic process
OLoP, GMS achieves 100% throughput. In networks in whicit every time slot. A scheduling algorithm must pick an
OLoP is not satisfiedg-Local Pooling [15], [16] provides a independent set at each slot so that neighboring nodes will
way of estimating the efficiency ratip* of GMS. Below, we not be activated simultaneously. Each column of the matrix
provide a different definition called-SLoP that is equivalent M(G) corresponds to a maximal independent setief An
to the original one from [15], [16]. algorithm which selects the independent set with the larges

Definition 2.4 ¢-SLoP - Xi et. al. [19]): A network weights (i.e., solves the Maximum Weight Independent Set
graph G satisfieso-SLoP, if and only if there exists a vectorProblem) is stable. SLoP corresponds to finding a vector
a € [0,1]'"I such that a € [0,1]V1] that assigns a weightv(u) to each nodeu
such that) ., a(u) = 1 for every maximal independent set
oe’ <a'M(G) <e’. Iin Gy. I;sjéh :E\ vector exists, we will call it good node

Clearly, if a graph satisfies-SLoP, it also satisfies’-SLoP Weighting For OLoP to be satisfied, SLoP must be satisfied
for every o’ < o. Therefore, it is sufficient to focus on theby allinducedsubgraphs (i.e., with respect to node removals).
largest value ofr such that( satisfieso-SLoP. This value is o-SLOP andr--OLoP extend to this case in a very similar way.

denoted by (G): C. Graph Theoretic Definitions

0(G) := max {o | G satisfieso-SLoP} . 1) We briefly review some definitions from graph theory that
This definition can also be written in terms of a LineaEre required in the following sections (for details, seel)28
X ! : or a graphi, we denote byN (v) the set of neighbors of
Zrc[)lgg?m whose solution yields thgG) for a given graph and bydeg(v) — [N (v)| the degree ofv. For z,y € V(G),
' we say thatz is a clone ofy if N(z) = N(y). We say that
o(Q) = max o (2) X CV(QG) is aclique (independent sgiif the vertices inX
subject tose” < a’M(G) < e are pairwise adjacent (non-adjacent). A matchirigs said to
- - covera vertexwv, if there exists an edge in/ that is incident

4This definition slightly differs from that in [3] by settingi¢ sum equal with v. Forz € V(G)’ we denote b)G'—x the_grgph_Obtained
to 7' instead ofce”’, wherec is a positive constant. from G by deletingz and all edges incident with it. Aimduced



subgraph ofG is a subgraph o7 that can be obtained from

G by repeatedly deleting a vertex and all edges incident with

it. For two graphsGy, G, anisomorphism fromG; to G» Q@ m

is a bijection¢ : V(G1) — V(G2) such thatuv € E(Gy),

if and only if ¢(u)p(v) € E(G2). Two graphsGy, G, are (@ D" (b) D3° (c) Petersen graph
isomorphig if t_here eXI_StS an_ |somorph|sm fro, t(,) Ga. Fig. 1. Graphs (a) and (b): examples of graphs from the faiify?, all of
An automorphism of~ is an isomorphism fron@ to itself.  \hich fail OLoP under primary interference. Graph (c): thetePSen graph.
A graphG is edge-transitiveif for all uv, wx € E(G), there This graph does not satisfy OLoP because it contains, amtrgg graphs,
exists an automorphism of G such thatp(u)¢(v) = wz. A Cs and Dy (bold edges) as subgraphs.

graphdG is vertex-transitiveif for all v, v € V(G), there exists
an automorphisng of G such thatp(u) = v. Fork > 1, we
say thatG is k-connectedf for every two distinct vertices in
G, there existk vertex-disjoint paths between them. A graph
is connected if it is 1-connected. donnected component of Only a small collection of network graphs have been shown
G is a maximal connected induced subgrapltiofFinally, for to satisfy OLoP under primary interference. Among the known
n > 1, we let K,, denote the complete graph emnodes and, cases are trees [3], [16], arxdx n bipartite graphs [3]. The

for t > 1, we let K, ,, denote thet x n complete bipartite main result of this section isdescription of the structure of all
graph. network graphghat satisfy OLoP under primary interference.
This structure shows that such graphs are relatively easy to

i ) construct and, moreover, they canrBeognized in linear time
We now describe a simple method to compute a lowghe proofs of the results can be found in Appendix B.

bounds ons(G) and provide a method for calculating G) Define the following families of graphs. For > 3, let

of e_dge— a_nd vertex-transitive graphs. These are graphs t@z be a cycle withk edges (or, equivalently; nodes). For
exhibit a high degree of symmetry (e.g., cycles). We will usg > 0 andp,q € {5,7}, let D?? be the graph formed by

the following notation: the union of two cycles of size and ¢ joined by ak-edge
v(G) = max{|Z| : Z is a maximal matching i}, pagh (E/vherek > 0().)If kd: (Zb)t)he cycle? shfre a com;ﬁon
. o . - node (see Fig. 1-(a) and 1-(b)). L&t = {Cx | k£ > 6,k
w(G) =min{|Z| : Z is a maximal matching ir&z}. U (DM | k > 0:p.q € {5,7}}. For two graphsZ and H,
The following lemma presents a lower-bounda(tz) [18]. e say thati containsH as a subgraph i€; has a subgraph
Lemma 2.1 (Leconte et al. [18])For any graph G, that is isomorphic tdd. We will say that a grapk is F-free
o(G) = w(G)/v(G) . if it does not contain any grapR € F as a subgraph.
Using Definition 2.4, we provide an alternative proof to this \we will focus on connected graphs, because it is easy to
lemma in Appendix A. To demonstrate the benefits ofdhe gee that a graph satisfies OLoP, if and only if all its conrgcte
OLoP definition, we provide a very simple proof to the fac¢omponents satisfy OLoP. So we may assume without loss of
that GMS achieves0% throughput in any network grapff  generality that all graphs in this section are connecteghga
(shown in different methods in [7], [20]). First, note thé€t  The results in this section are three-fold. First, in Sutieac
size of any maximal matching is at least half the size of @A we give a structural description of alF-free graphs.
maximum matching [24], which means thatG) > v(G)/2,  Second, in Subsection 111-B, we will use this description to
for all G. By Lemma 2.1 and (3), it follows that*(G) > 1/2 prove the following theorem:
for every graphG, and therefore thay™ > 1/2. ~ Theorem 3.1:A network graphG satisfies OLoP under
For edge-transitive graphs, the following lemma is Brimary interference, if and only i€ is F-free.
stronger counterpart of Lemma 2.1 (the proof is in AppendiX Theorem 3.1 shows that if a network gragh does not

Ill. NETWORK GRAPHS THAT SATISFYOLOP UNDER
PRIMARY INTERFERENCE

D. o(G)-values and Bounds an(G)

A): _ ) N satisfy OLoP under primary interference, théh contains
Lemma 2.2:If G is edge-transitive, theno(G) = somer ¢ F as a subgraph. For example, it was previously
wG)/v(G). shown that the Petersen graph (Fig. 1-(c)) fails OLoP [15].

The lemmas introduced previously also extend to general i)ging Theorem 3.1 we can immediately see this from the fact
terference graphs. We define the independent set court®erpgy,; it contains, for example;s and D> as a subgraph.
of 4(G) andv(G) as follows: Testing whether a network graph satisfies SLoP previously
7(G) = max{|S| : Z is a maximal independent set @}, required enumerating all maximal matchings (of which there
7(G) = min{|S| : Z is a maximal independent set @} are an exponential number)_ .and sc_JIvmg a Linear Program
[8]. To test the OLoP condition, this procedure had to be
It is easy to generalize Lemma 2.1 to interference grapfspeated for every subgraph. The weakness of this appreach i
G and show that(G) > 1(G)/v(G). For vertex-transitive jts large computational effort. In Subsection 11I-C, we geat
graphs, the following is proved in Appendix A: the third result, which uses the structure Bffree graphs to
Lemma 2.3:If G is vertex-transitive, theno(G) = construct an algorithm that decides in linear time whether a
(G)/P(G). graph satisfies OLoP, as described in the following theorem:



Theorem 3.2:It can be decided i®(|V (G)|) time whether Block of the By type
a network graplt; satisfies OLoP under primary interference.

A. The Structure ofF-free Graphs

We will start with a structural description df-free graphs.
The reason for our interest iR-free graphs is the fact (which
will be proved in Subsection IlI-B) that the class &ffree
graphs is precisely the class of network graphs that satisfy
OLoP under primary interference.

We will describe the structure of-free graphs in terms
of the so-called ‘block decomposition’. Lét be a connected
graph. We call: € V(G) acut-node ofG, if G—x is not con-
nected. We call a maximal connected induced subgfaphG
such thatB has no cut-node block ofG. Let By, B, ..., By Fig. 2. An example of ar-free graph (the dashed edges may or may not
be the blocks ofG. We call the collection{ By, By, ..., B,} be present). The ellipses show the blocks of the graph.
the block decomposition ofy. It is known that the block
decomposition is unique and thai(B), E(Bz), ..., E(By)
forms a partition ofE(G) (e.g., [28]). Furthermore, the nodedraphs have at most one block of the type and that all other
sets of every two blocks intersect in at most one node and tRI§Cks are of thes, type. This means thak-free graphs can
node is a cut-node of.. be constructed by starting with a block that is either of ffie

Block decompositions give a tree-like decomposition of & ©f the B> type, and then iteratively adding a block of the
graph in the following sense. Construct thénck-cutpoint B2 type by ‘glueing’ it on an arbitrary node. _
graph of G by keeping the cut-nodes ¢f and replacing each  Fig- 2 shows an example of ah-free graph. The tree-like
block B; of G by a nodeb;. Make each cut-node adjacent structure is clearly V|s.|ble. The graph has one block of the
to b; if and only if v € V(B;). It is known that the block- B type W|thl_f = 7. This block consists of a cycle of length
cutpoint graph of forms a tree (e.g., [28]). With this tree-like / t0gether with two clones. The other blocks are of the
structure in mind, we say that a blodk is aleaf blockif it ~YPe. Some of them are attached to the block of fhetype
contains at most one cut-node 6f Clearly, if ¢ > 2, then through a cu_t-node. Others are attached to (_)ther_ blockseof th
{B;}7_, contains at least two leaf blocks. B _type. Notice that trees aritix n complete bipartite graphs,

It turns out that the block decomposition of &hfree graph Which were previously known to satisfy OLoP [3], [16], are,
is relatively simple in the sense that there are only two syp&S Should be expected, subsumed by this structure.
of blocks. The types are defined by the following two families "€ goal of this subsection is to prove the following formal
of graphs. Examples of these families appear in Fig. 2.  Version of the characterization given above:

. Theorem 3.3:Let G be a connected graph and let
B;: Construct; as follows. LetH be a graph with/(H) = o
{c1, Cay - e}, with & € {5,7}, such that {B1,Ba,...,B,} be the block decomposition @¥. ThenG

. is F-free, if and only if there is at most one block that is of
1) cr-co---- ck-c1 is a cycle; _ _ the B, type and all other blocks are of th#, type.
2) if k =5, then the other adjacencies are arbitrary; if The proof of the ‘i’ direction is straightforward. Here, we
k = 7, then all other pairs are non-adjacent, excegyi| give a proof sketch of the ‘only-if’ direction in a numbe
possibly{cy,ca}, {c1,¢5} and{eq, er}. of steps. For a block in an F-free graph, its type depends
Then, H € B;. on the size of the longest cycle iB. It will turn out that if
Now iteratively perform the following operation. LetB contains a cycle of length or 7, then B is of the B; type.
H' € By and letx € V(H') with deg(z) = 2. Otherwise,B is of the B, type. We have the following result
ConstructH” from H' by adding a node:’ such that on blocks that have a cycle of length five or seven.
N(z') = N(z). Then,H"” € B;. We say that a graph is Lemma 3.1:Let G be anF-free graph and leB be a block
of the B, typeif it is isomorphic to a graph ir3;. of G. Let F be a cycle inB that has maximum length. If
By: Let By = {Kz, K3, K4} U{Ka,, KJ, | t > 2}, where |V(F)| > 5, thenB is of the B, type.
K3, is constructed fronk, ; by adding an edge between Next, we deal with blocks that do not contain a cycle of
the two nodes on the side that has cardindlityVe say length 5 or 7. It follows from the definition af-free graphs
that a graph isof the B type if it is isomorphic to a that such blocks do not have cycles of length at least 5.
graph inBs. Maffray [21] proved the following theorem:
In simple words, graphs of thB; type are constructed by Theorem 3.4:[Maffray [21]] Let G be a graph. Then, the
starting with a cycle of length five or seven. Then we may ad@llowing statements are equivalent:
some additional edges between nodes of the cycle, subjec{ip G does not contain any odd cycle of length at least 5.
some constraints. Finally, we may iteratively take a node# (2) For every connected subgraghf of G, either G’ is
degree 2 and add a clong of z. It will turn out that F-free isomorphic to Ky, or G’ is a bipartite graph, oG’ is

Blocks of the By type




isomorphic toKZt for somet > 1, or G’ has a cut-node. Proof idea: Let G be a connectedF-free graph and let
Theorem 3.4 implies the following lemma. {Bi1,Bs,..., By} be the block decomposition @f. It follows
Lemma 3.2:Let G be anF-free graph and leB be a block from Theorem 3.3 that there is at most one bldgkthat is of
of G. Suppose thaf3 contains no cycle of length at least the Bi type and all other blocks are of thi, type. We will
Then, B is of the B, type. construct a good edge weightirag for G.
We are now ready to prove Theorem 3.3: Suppose first thatz has a leaf bloc_:k& of the B» type. If
Proof of Theorem 3.3:Let G be anF-free graph and ¢ = 2, then letz be the cut-node of7 in V(B;). If ¢ = 1, let
let {By, By, ..., Bn} be the block decomposition a@f. For @ € V(B;) be arbitrary. There are four cases:
everyi € {1,2,...,m}, if B; contains a cycle of lengts (1) Bi is isomorphic tof>: let z, v denote the nodes ds;.
or 7, it follows from Lemma 3.1 thatB; is of the B, type. L€t a(e) =1 for all edges incident with: anda(e) = 0 for
Otherwise, it follows from from Lemma 3.2 tha, is of the €Vvery other edge.
B, type. Now suppose that there are j andp, q € {5,7} (2) B, is isomorphic toK’5: let a(e) = 1 for all e € E(B;)
such thatB; contains a cycld of lengthp and B, contains anda(e) = 0 for every other edge.
a cycleT; of length¢. SinceG is connected, there exists a (3) Bi IS isomorphic toy: et z, vy, v, v3 denote the nodes
path P of lengthk > 0 from a node in7} to a node inZ,. Of Bi andleta(vivy) = a(vivs) = a(v2v3) = 1 anda(e) =
SinceT; andT; are subgraphs of different blocks; andT, 0 for all e € (E(G) \ {vivz, vivz, vav3}).

share at most one node. If they share a node, then 0. (4) B; is isomorphic toK5; or K, for somet > 2: let
Now the edges of}, T, P form a graph isomorphic td?¢, V(Bi) = ViUV; such thatV;| = 2 andV; is an independent
a contradiction. This proves Theorem 3.3. m set LetVi = {y1,42} and letVs = {z1, 22, ..., 2. }. If B; is

isomorphic toK;f2 andz € V5, then assume that = z;

B. Network graphs satisfy OLoP under primary interferencend seta(y122) = a(y222) = a(y1y2) = 1. Otherwise,B;

if and only if they areF-free contains nodep, p’ such thatdeg(p) = deg(p’) = 2 andp’ is
Now that we have described the structure of &llfree & clone ofp, and hence, the result follows from Lemma 3.4.
graphs, we use this structure to prove Theorem 3.1 whichThus, we may assume thatdoes not have a leaf block of
states that a network graph satisfies OLoP under primdff B2 type. Since ifg > 2, G has at least two leaf blocks, and
interference, if and only if it isF-free. It was shown in [3] NENce. at least one leaf block of tBe type, we may assume

(Theorems 2 and 3) that all cycles of lendth> 6, k # 7 fail that ¢ - }_andG = B is of the 5, type. LetH, k be as in

SLoP® Therefore, such cycles do not appear as subgraphstl?ﬁ definition of3;. It follows from the definition of H that

graphs that satisfy OLoP. The following lemma shows that tHX(Hﬂ = k. First, SUppose thalt’ (G) \ V(H) 5& 0. Then, it
same is true for the grapha??. follows from the definition of3; that there exist two nodes

Lemma 3.3:D” fails SLoP for allp, ¢ € {5,7}, k > 0 x, 2’ such thatdeg(z) = deg(2’) = 2 andz’ is a clone ofx.
N L A i t follows from Lemma 3.4 that: satisfies SLoP. So we may
The results from [3] together with Lemma 3.3 imply thé : ' .
following result: assume thaV(G_*) = V(H). If k£ =5, then every maximal
Corollary 3.1: Graphs that satisfy OLoP atg-free. matching has size two, and hence, we mayc@t) = 1/2

Proof: Let G be a graph that satisfies OLoP. By th or aII. ¢ € E(G). It k =17, then every maximal matching
definition of OLoOP, every subgrapH of G satisfies SLoP. as;%e three, and hence, we may agt) = 1/3 for a:
Since every graph ifF fails SLoP, it follows thatG does not e € B(G). . . )
contain any graph i as a subgraph. - We are now in a position to prove Theorem 3.1:

Corollary 3.1 settles the ‘only-if’ direction of Theorem13. Proof of Theorem 3.:‘L.:§:orollary 3.1 s the ‘only-if" part
ey . . of the theorem. For the ‘if’ part, since every subgraph(bf
To prove the ‘if’ direction, we will start with a useful lemma .

S . . is F-free, it follows from Lemma 3.5 that every subgraph of
X\:)ep(\évrl]l(ljigl\ée the idea of the proof, the full proof being InG satisfies SLoP. Thereforé; satisfies OLoP. [ |

Lemma 3.4:Let G be a graph and, 2’ € V(G) such that C. Recognizing network graphs that satisfy OLoP under pri-
deg(r) =2 andx’ is a clone ofz. Then,G satisfies SLOP.  mary interference

Proof idea: Let {z1,2,} = N(x). Definea € [0, 1] Having described the structure of graphs that satisfy OLoP,

by letting a(e) = 1/2, if e is incident withz; or z, and e provide an efficient algorithm for testing whether a given
e # 2122, az122) = 1, if 2120 € E(G), anda(e) = 0 forall  nonyork graph satisfies OLoP under primary interference. A
other edges. Now every maximal matching uses either tWQ,sefy| observation is the following (see Appendix B for the
edgese, ex With a(e1) = a(es) = 1/2, or edgez; zs. [ ] roof).

The following lemma is the crucial step in settling the ‘onlyp Lemma 3.6:|E(G)| < 2|V(G)| for every F-free graphG.
if” direction of Theorem 3.1. Again, we give the proof idea. 1his puts us in a po_sition to prove Theorem 3.2.

Lemma 3.5:Every connectedr-free satisfies SLoP. Proof idea of Theorem 3.2:We may assume thaf

5Although the case considered in [3] pertains to interfeeemgaphs is connected. By Theorems 3.1 and 3.3, it suffices to check
the network case is identical since the interference grapiuer primar); whetherG has the. Strucwr? described in Theorem 3.3. We
interference) of a cycle is a cycle of the same length. propose the following algorithm. Let = |V (G)| andm =



for every maximal matchingZ in G. This proves (c), thus
proving Lemma 4.1. [ |

By using the conditions given in Lemmas 4.1 and 2.1, we
prove the following lemma in Appendix C:

Lemma 4.2:Let G be a bipartite graph with:(G) < 4.
Theno(G) > 2/3.

Lemma 4.2 has the following corollaries:

Corollary 4.1: Every bipartite graphG with v(G) < 7
satisfiess*(G) > 2/3.
|E(G)|. First, check thain < 2n, because otherwis@ is not Proof: Let H be a subgraph oty (perhapsH = G).
F-free by Lemma 3.6 and we can stop. Now, construct tkdearly, v(H) < v(G) < 7. If u(H) < 4, then it follows
block decomposition{ By, Bs, ..., B,} of G. Sincem < 2n, fromLemma 4.2 that(/) > 2/3. Otherwiseu(H) > 5 and
this can be done i (n+m) = O(n) time (see e.g., [11]). For hence it follows from Lemma 2.1 that(H) > 5/7 > 2/3.
each blockB;, testinO(|V (B;)|) time whetherB; is of theB, ~Therefore,s(H) > 2/3 for all subgraphs? of G. It follows
type. If G has more than one block that is not of thetype, thato*(G) > 2/3. u
then G is not F-free and we stop. If we encounter no such It is already known that*(K;,) = 1 for t € {1,2}. For
block, thenG' is F-free and we stop. Next, check whethigt 3 <t < 7, we obtain:
is of the B; type using multiple applications of Bodlaender’s Corollary 4.2: o*(K; ) =2/3 forall 3 <t <7, n > 3.
algorithm [2] which, for fixedk, finds a cycle of length at least Proof: Let 3 < ¢ < 7, n > 3. It follows from Corollary
k in a given graphH, if it exists, in O(k!2¥|V(H)|) time. 4.1 thato*(K;,) > 2/3. Since K, containsCs as a
Checking this can be done @(|V (B)|) time. Therefore, the subgraph and(Cs) = 2/3, it follows that o* (K, ,) = 2/3.
overall complexity of the algorithm i®(n). [ | |

Fig. 3. The Desargues gragh for which o(D) = 0.6 and which is a
subgraph ofK'10,10, showing thato* (K10,10) < 0.6.

IV. t x n SWITCHES WITHt < 7 SATISFYo* > 2/3 V. INTERFERENCE GRAPHS AND THEIRT*—VALUES

In the previous section, we characterized the full set of Qur focus so far has been on network graphs and primary
graphs that satisfy OLoP. It is only natural to ask the qoesti interference constraints. We now consider general inenfse
what happens to graphs that do not satisfy OLoP? In thjgaphs that represent various transmission constraistsalR
section, we will show that every bipartite gragh that has that under general interference constraints, a schedaliy
one side with at most 7 nodes satisfieG) > 2/3, which rithm has to select an independent set from the interference
implies thato*(K:,) = 2/3 for 3 < ¢t < 7,n > 3. graph at each slot. We are interested in the performance of
We also note that this bound is close to being tight by low-complexity GMS algorithm which greedily picks the
presenting a bipartite graph with 10 nodes on one side fagdes with the largest weight (this algorithm is also referr
which o*(G) < 2/3. Consider the so-called Desargues grapig as the Maximal Weighted Independent Set algorithm). The
D in Fig. 3. D is edge-transitive and hence it follows fromyesults are summarized in Fig. 4 which illustrates throughp
Lemma 2.2 and the fact tha{D) = 10 and u(D) = 6 that guarantees of several graph families.

(D) = 3/5. SinceD is a subgraph of<( 19, this implies
thato*(K,,,) < 3/5 forall t > 10,n > 10. The proofs of the A. OLoP-satisfying Interference Graphs

results can be found in Appendix C. . We first show that the OLoP condition holds in a large
we now concentrate on subgraphs[ﬁj@ with ¢ < 7,n Z  subclass of perfect graphs which we will call co-strongly

1. We will start with some easy observations that help 9IV€ Gbrfect graphs:

lower bound on(G). Definition 5.1 (Co-strongly perfect graphA graph G is

Lemma 4.1:Let G be a graph. co-strongly perfect if for every induced subgrafitof G there
(a) If there existsv € V(G) such that every maximal existsa = a(H) € {0,1}V ™) such thata M(H) = €.

matching inG coversv, theno(G) = 1. Equivalently, a grapl&¥ is co-strongly perfect, if and only iff
(b) If deg(v) =1 for somev € V(G), theno(G) = 1. contains a clique that intersects every maximal indepetrsgn
(c) If deg(v) = 2 for somev € V(G), theno(G) > 2/3. in G. It follows from the definition, and from the interference

Proof: Part (a): leta(e) = 1 for all edges incident with graph counterparts of Definitions 2.2 and 2.3 t&aéry graph
v and a(e) = 0 for all other edges. Clearly, every maximathat is co-strongly perfect satisfies OLoP
matching Z satisfies ., a(e) = 1. This proves (a). Part Note from the above weighting that co-strongly perfect
(b) follows immediately because ifeg(v) = 1, then every graphs satisfy OLoP with an integer vectar. An open
maximal matching covers the unique neighhoof v. Part question is whether all perfect graphs that satisfy OLoPalo s
(c): leta, b be the neighbors of. Let a(av) = a(bv) = 2/3, with integer weightsx. This is not true for imperfect graphs,
a(ab) = 1 if ab € E(G), a(e) = 1/3 for all edgese ¢ because’s is an imperfect graph that satisfies OLoP with the
{ab,bv, av} that are incident withu or b, anda(e) = 0 for unique optimal node weighting(v) = 1/2 for allv € V(C5).
all other edges. It is not hard to see that ., a(e) > 2/3 The vertical division of Fig. 4 into perfect and non-perfect



%] P P
o ( Co-Strongly Perfect
(1.(F-free) | )
* —
o" =1 lec, L(Bip) < 7 a b
o (LBip) < W o (a) (b)
2| fOCyc=9 ECyc > 6 ) oFig,, Fig. 5. Graphs that have low* values: (a) Mdbius-Kantor graph (), a
1>0"> 3 Bipartite graph where each node of(% is substituted by &.
9 1| Jereey CelCiaCigpe
3 =z 2| | Line Graphs . . .
D - We now obtain thec* values of the entire family of
1. oL, cycles, some of which have been considered individually in
3= >0 O the literature. For the 6-cycle it has been shown that 2/3

[8], [15] (represented by the poil@6 on Fig. 4). It has also

Fig. 4. Throughput guarantees (boundsod) for various interference graph been shown that5 andC7 Sat'Sfy OLoP, while Iarger Cydes
families: P - Perfect graphsP - Non-perfect graphs, ECye 6 - cyclesC,,  (n > 8) do not [30]. Using Lemma 2.3, the following lemma
with n even andn > 6, OCyc > 9 - cycles C,, with n odd andn > 9, provides thes* of all cycles.
L(Bip) < 7 - line graphs ofk x n bipartite graphs witht < 7, CBip - . N
Chordal bipartite graphs, L(Pet) - Line graph of the Petegraph, L(F-free) Lemma 5.1:Forn > 3, 0*(Cy) = [n/3]/[n/2].
-M I:itr;,e g{(ﬁlpf}s ofF-frhe; @Jraphst,1 Fik% - Gdrabph from IFig- 4|2 in t[Jlf_]t, tMalrf;c Proof: Let n > 3. Since every proper induced subgraph
obius-Kantor graphf% - graph obtained by a single cycle substituti . . -
- sequence of graphs obtained by recursive cycle subetituti H of Cy (I'e' o # Cn) 1S a_forest, \_Ne haveT(H) o 1
for every suchH. Now considerC,, itself. A maximum

independent set ik, can be constructed by choosing nodes

graphs, denote® and P, respectively, allows us to represenglternatingly on the cycle. This implies thatG) = |n/2].

this open problem by the question mark in the perfect divisioA smallest maximal independent set can be constructed by
TheCo- Strongly Perf ect class includes a large num-choosing nodes skipping two nodes at a time. This implies

ber of perfect graph families (some of them identified indivi that Z(G) = [n/3]. SinceC,, is vertex-transitive, it follows

ually in [30]). To provide some context about the magnitud&om Lemma 2.3 that(G) = [n/3]/[n/2]. From this and

of the result, consider the set of simple graphs with 10 nodége above, the result follows from the definition ©f(G). m

There are 3,063,185 such co-strongly perfect graphs. Hris ¢ To the best of our knowledge, this is the first time an entire

be compared to the 126,768 chordal graphs with 10 nodes (tamily’s o—value has been characterized this precisely. This

chordal graphs family is one of the largest previously knowr@sult is shown in Fig. 4 as the clas€88yc > 6 andOCyc

families satisfying OLoP) and to the 106 trees [26]. > 9, for large even and odd cycles, respectively. No odd cycle
We proved in Section IlI-A thafF-free network graphs are can haves™ = 2/3, which is why theOCyc family is strictly

OLoP-satisfying under primary interference. This is showwithin the second division. The family of even cycles is gkac

in Fig. 4 by the clasd.(F-free) (line graphs ofF-free the intersection of th&i partite and theLi ne G aphs

graphs), which is a subclass of thé ne G aphs family. families that do not satisfy OLoP. In other words, there are

Since L(F-free) graphs represent all OLoP-satisfying lin@o bipartite line graphs that have® < 1 and that are not

graphs, this family covers the entire sectionLohe G aphs large even cycles. Sincg:/3]/|n/2| > 2/3 for all n > 3,

that is in thes* = 1 division. The chordal bipartite family, de- Lemma 5.1 provides a lower-bound®f3 for arbitrary cycles,

notedCBi p on Fig. 4, is another family that is entirely OLoP-resulting in the following corollary:

satisfying and forms the subclassBifparti t e graphs that  Corollary 5.1: For all cycles,c*(C,,) > 2/3.

are co-strongly perfect and OLoP-satisfying [30].

B. o*—values for Line Graphs C. Lowo"~values

We examine ther* values of interference graphs that are We now focus on graphs with very low*. The current
Li ne G aphs and that fail OLoP. As mentioned in Sectiorknowledge ofco*—values is limited to a handful graphs in
Il and in [20],0* > 1/2 for all Li ne Graphs. In Fig. 4, the which GMS achieves a large portion of the stability region.
bottom part of this family is shaded to indicate that we stilThe lowesto*—value of a specific graph is* = 0.6 for the
do not have any specific example of a line graph for whidine graph of the Petersen graph [15]. In [16], it was shown
o* = 1/2. The line graph with the lowest knows* value that for geometric graphs/6 < o* < 1/3. Below, we present
(c* = 0.6) is the line graph of the Petersen graph (Fig. 1-(cy graph that has* = 0.5 and provide a method through which
[15], denoted_( Pet ) . it is possible to create networks with arbitrarily lawi.

We consider families that are subclasses of line graphs.Consider the graph shown in Fig. 5-(a). It is a generalized
The results on bipartite network graphs from Section IVglinPetersen graph with factor&P(8,3), also known as the
graphs of subgraphs ok, with ¢ < 7 haveos* > 2/3) M0obius-Kantor graphM K. Because of its vertex-transitivity,
are shown on the figure as th€ Bi p) < 7 class which is it follows from Lemma 2.3 and from the fact that V() = 8
located in the top and the second divisions. and o(MK) = 4 that o*(MK) = 1/2. Hence, GMS can



only guarantee 50% throughptiBeing a bipartite graph, tl
Mobius-Kantor implies thaBi parti t e graphs can have*
values as low as 0.5, as illustrated in Fig. 4. Whether hite
graphs can have* < 0.5 is still an open question, shown
the shaded region in Fig. 4.

Now consider the following family. Lef; be a 6-cycle an
for k > 2, constructF}, from Fj_; by substituting a 6-cyc
for each nodes € V (Fy,). By substitutingCs for a nodex of
the original graph, we mean that we replacby a6-cycle H
and we make every € V (H) adjacent to every neighboret ¢ | -~ _—" .
For example F; is shown in Fig. 5-(b), (where the hexag Y] ¢ onE e 0.05 1
represent 6-cycles). Using Lemma 2.3 and the fact thaf}}. _ Uniform arrival rate (pkts/slof)

are vertex-transitive, we prove the foIIowmg n Appendlx D Fig. 6. Average queue sizes as a function of the arrival rateeuGMS and

. ) k
_Observat|0n 5.1.0%(Fy) S (2/3) for "f‘” k>1. the optimal algorithm. The results obtained via simulatiora 12-cycle and
Since we may choosk arbitrarily large, it follows that there a Mobius-Kantor graph.

exist graphs with arbitrarily smali*. A graph generated by

this method appears in Fig. 4 B® and the sequence of graphs _ o _

obtained through recursive substitution with decreasing Showed that in all bipartite graphs of size up7o n, GMS

values is shown aBKk. is guaranteed to achiewi®% throughput. Finally, we studied
Finally, it can be shown that the family of weakly chordaihe performance of GMS in interference graphs and showed

graphs that was left unresolved in [30] is not entirely OLofthato™ can be arbitrarily low. _ _

satisfying. An example of a weakly chordal graph that is not We emphasize that our objective in this paper is to obtain

Co-strong|y perfect and that hag < 1 appears in F|g 42 in @ better theoretical Understanding of LoP that will assist

w
o
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[13] and is denoted in Fig. 4 && g42. the development of future algorithms. As such, the paper
demonstrates that using graph theoretical methods caif-sign
D. Simulation Results icantly contribute to our understanding of greedy scheduli

When GMS guarantees only low throughput efficiency algorithms. From a graph theoretical point of view, LoP eais
there may exist a specific arrival rate outsideofA* for many interesting open problems. For example, three of the
which GMS is not stable. In real-life arrival processessit jauthors [5], [6] are currently working on extending somehef t
sometimes unlikely that such an arrival process would occi@sults to claw-free graphs, which are a generalizatiorhef t
Hence, GMS may behave better than predicted. We udgéerference graphs of networks under primary interfeeenc
Matlab simulations in order to evaluate the performance 5fom the networking point of view, there remain many open
GMS in graphs with lows* identified in Section V-B. problems. For example, generalizing the interference itode

We consider i.i.d. uniform arrivals to every node at each model based on SINR and deriving the corresponding LoP
time slot for a range of normalized loads within the stapilitconditions remain major subjects for future research.
region. We tested the GMS and the stable algorithm that solve
the Maximum Weight Independent Set problenfor each
arrival rate, the simulation was run for 10,000 iteratioigr  [1] M. Ajmone Marsan, E. Leonardi, M. Mellia, and F. Neri, “Othe
each graph and arrival rate value, the average queue lengths f;ﬁﬁ'iggszf t'rsa(zf'ﬁ:t’??Ef:_"édT'gﬁ:‘:olrr‘]?oerﬁdngr_‘%ufuﬁé’?%‘é‘;i lﬂg‘;r_
appear in Fig. 6. The cyclé;» hase* = 2/3. In the figure, we 1174, Mar. 2005.
see that in a cycle, the queues under GMS become unstabld4tH. Bodlaender, “On linear time minor tests with depttsfisearch,’J.
around load level of 0.85. Although the Mobius-Kantor drap 5 Algorithms vol. 14, no. 1, pp. 1-23, 1893.
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APPENDIXA
FULL PROOFS OF THE RESULTS INSECTION ||

Lemma 2.1: Let G be a graph. Thery(G) > u(G)/v(G)
(in the network graph sense).

Proof: Let « : E(G) — [0,1] be defined bya(e)
1/v(G) for all e € E(G). This is clearly a good edge weight-
ing for G. Since every maximal matching @ has size at least
v(G), itfollows thatu(G)/v(G) < Y., a(e) < 1 for every
maximal matchingZ in G. Therefore,o(G) > u(G)/v(G).
This proves Lemma 2.1. |

Let G be a graph. The following lemma provides a useful
method for constructing optimal solutions to the following
Linear Program, which is the interference graph analogue of
(2):

o(G) (4)

max o
subject toce” < a’I(G) < e’

)

wherea € [0,1]V(@) andI(G) is the maximal independent
set/vertex incidence matrix correspondingZoFor an integer
t > 0 and an automorphism of G, we denote by the tth
composition of¢ with itself (where#® denotes the identity
function).

Lemma A.l:Let G be a vertex-transitive graph. If (4) has
a solution (o, @), then (4) has a solutioffo, ') such that
a'(v) = cforallveV(G).
Proof: Let (o, ) be a solution of (4) such that

fla) =) |e(u) - alv)

is minimum. If f(a) = 0, then the lemma holds. So suppose
for a contradiction thaf (a) > 0. Then letz,y € V(G) such
that |a(z) — a(y)| is maximum. Since? is vertex-transitive,
there exists an automorphisgnof G such thatp(z) = y. Let

T > 1 be smallest such that” = ¢ and define

T

=
Z ao ¢l
t=0

In this expression, becaugeis an automorphism, every term
in the summation corresponds to a solutiena o ¢*) of (4).
Since 8 is the convex combination of solutions of (43, is
also a solution of (4). It follows from the triangle inequgli
that, foru,v € V(Q),

8=

|

T-1

> lal@ (w) — ald (v)].

t=0

1
<

B - BE)| <

By the construction of3, we have3(z) = 3(y). Notice also
that f(a) = f(ao¢?) for all t. Now, sincela(x) —a(y)| > 0,



we obtain

£B)=>_|B() - B(v)|
>

(w0} o)
1 T—1
> [? > le(@(w) ~ a(qﬁt(v))\]
(un)bfegy = 0
<z|a<u> . a<v>\>  alz) - a<y>|]

T-1

1
+T;f(a<>¢>t)

|B(u) = B(v)]

<

1
<
- T

1 N 1 T—-1
< 7 Xlet -]+ 3 3@

= |a(u) — a(v)

which contradicts the assumption tlhatvas chosen witlf ()
minimum. This proves Lemma A.1l. |

Lemma 2.3: If G is vertex-transitive, therns(G)
a(G)/v(G) (in the interference graph sense).

Proof: We prove this by induction ofi/(B)|. It follows
from the definition ofF thatk € {5, 7}. Let f1, f2,..., fx be
the nodes off’. We will start with a number of subclaims:

(i) Every node inV(B) \ V(F) is a clone forF.

Let x € (V(B) \ V(F)). Since|V(B)| > |V(F)| > 5 and
|[V(B)| has no cut-node, it follows thaB is 2-connected
and hence there exist two edge-disjoint paths and P,
from 2 to two distinct nodes off’, say f; and f;, respec-
tively. From the symmetry, we may assume that 1 and
j > k/2. First assume thatE(Py)| + |E(P:)| > 3. Now
f1-Pr-z-Po-fj-fj_1-----fo-f1 is & cycle of lengtHE(P;)| +
|E(P2)| +j > 3+ k/2, contradicting the maximality of".

It follows that |E(Py)| + |E(P2)] = 2 and, therefore,
|[E(Py)| = |E(P;)| = 1. Thus,z has two neighbors i/ (F').
If 2 has two consecutive neighbors¥(F'), say f1, f2, then
fr-x-fo-fz-e - fr_1-fr-f1 is a cycle of lengthk + 1, contary
to the maximality of F'. If k = 5, then, sincer has at least
two neighbors inV (F), it follows that z is a clone forF.
So we may assume that= 7. Suppose that is adjacent to
fp and f,13 for somep € {1,2,...,7}. From the symmetry,
we may assume that = 1. But now fi-x- f4- f5-fo-f7-f1 IS
a cycle of length six, a contradiction. From the symmetry,
follows thatz has exactly two neighbors iff and they aref,,
and f .o for someq € {1,2,...,7}. Hence,x is a clone for
F. This proveq(i).

it

Proof: It follows from Lemma A.1 that there exists an

optimal solution(o, ) for the Linear Program (4) such that(”)

a(v) = cforall v € V(G) for somee. Therefore, (4) may be
reduced to the following Linear Program in two variables:

o(G) (5)

max o
subject toce” < ¢cM(G) < e”.

In this Linear Program, it is clearly optimal to chooseas
large as possible and chooseas large as possible subject t
the choice ot. Clearly, the largest possible valueois —

o (G
The corresponding largest possible valuecofs A(G)

R This
proves Lemma 2.3. [ ]

The following lemma is an easy corollary of Lemma 2.3:

Lemma 2.2: If G is edge-transitive, thernrs(G)
w(G)/v(G) (in the network graph sense).

Proof: Notice that it follows, from the fact that is edge-

transitive, that the line graph(G) of G is vertex-transitive.

(0]

V(B)\ V(F) is an independent set.

Suppose thatr,y € V(B) \ V(F) are adjacent nodes. We
may assume that is a clone of f,. First suppose thay

is also a clone off;. Then z-fs5-f4-- - fr—1-fx-f1-y-x iS
a cycle of lengthk + 1, contary to maximality ofF'. Next,
suppose thay is a clone of a node at distance 2 ff, say
fr. Thenaz-fi-fo-----fr_1-y-z is a cycle of lengthk + 1,
contary to maximality ofF. Finally, suppose thak = 7
and y is a clone of a node at distance 3 #f, say f5. It
follows thatx- f1- fo- f3- f4- f5- f6-y-2 IS @ cycle of length eight,
a contradiction. This prove@i).

Now suppose there exists € (V(B) \ V(F)) # 0. It
follows from the above that is a clone forF. From the
symmetry, we may assume thatis a clone off,. We claim
that deg(f2) = 2. For suppose not. Thefi, has a neighbor

y & {f1, f2, f3}. First suppose thay € (V(B) \ V(F)). It
follows from (i) thaty is a clone off; or of f3. From the

Moreover, since matchings i correspond to independentSymmetry, we may assume thatis a clone off;. But now

sets inL(G), it follows that 4(G) = w(L(G)) and v(G)
7(L(@G)). Hence, it follows from Lemma 2.3 that(G)
A(L(G)/P(L(G)) = (G) /v(G).

APPENDIXB
FULL PROOFS OF THE RESULTS INSECTION |11

Lemma 3.1: Let G be anF-free graph and letB be a
block of G. Let F' be a cycle inB that has maximum length.
If [V(F)| > 5, thenB is of the B; type.

y-fo-f3-x-f1-fo-y iS a cycle of length six, a contradiction.
Therefore, it follows thay = f; for somej € {4,5,... k}.
First assume that = 5. Thenz- f1- fo- f5- f4-f3-z iS a cycle
of length six, a contradiction. From the symmetry, this kv
only the case wheré = 7 andj € {4,6}. We may assume
thatj = 4. But now fs- f4-f5-fs-f7-f1-f2 is a cycle of length
six, a contradiction. This proves thdtg(f2) = 2. It follows
from the induction hypothesis thd& — f, is of the B; type.
Therefore, by the definition aBy, it follows that B is of the
B type.



So we may assume thaf(B) \ V(F) = (. If £k = 5, this for the case whem: = 5. The case whenn = 7 is
then we are done. So we may assume fhat 7. If F'is an analogous. Lef\/ be a maximal matching i’ that covers
induced cycle inB, then we are also done. So we may assume Let My = M U {f1 f2, f3f4} and letMs = M U {f2f3}.
that there is at least one edge between s¢gimand f; with Sincea is a good edge weighting ardd; and}, are maximal

li — 7] > 2. matchings, it follows thatx(f2 f3) = a(f1 f2)+a(fsf1). Now
(i)  There is noi € {1,2,...,7} such that either (a)f; let M’ be a maximal matching i’ that does not cover. Let
is adjacent tof;», or (b) f; is adjacent tof; ;5 and f,, 1 is M1 =M ULf1v, f2fs} andMy = M'U{f1v, f3fa}. Sincea
adjacent tof; 5. is a good edge weighting and; and M} are maximal match-

ings, it follows thata(f2f3) + a(f1v) = a(fsf1) + a(frv).
- ) ) Hence,a(fa2f3) = a(fsf4). Using the symmetry, it follows
adjacent tofi., it follows that f1-fs-fa-f5-fo-fr-fris acycle o a(faf3) = a(f1f2). Combining this with the equality
of length six, a contradiction. For part (b), ff is adjacent ¢, g above, it follows that(fsfs) = 2a(fafs) and hence
to f;13 and f; 1 is adjacent tof; .5, then it follows that that ae(fifo) = alfafs) = a(fsfs) = 0. Finally, let
fi-fa-fs~fo-fo-fr-f1 is @ cycle of length six, a contradiction. y /v e " "maximal matching i’ that covers all neighbors

This proveii) . of v but notw itself. Let M} = M" U {fiv, fofs} and

It follows from the above and frongiii) that there exists M2 = M"U{f1f2. fsfa}. Sincee is a good edge weighting
i € {1,2,...,7} such thatf; is adjacent tof;,s. From the and M{ and M} are maximal matchings, it follows that
symmetry, we may assume that= 1. It follows from (iii) a(fiv) + a(fafs) = a(fif:) + a(fsfs) = 0. Hence,
that f, is non-adjacent tofs and fs, and f5 is non-adjacent ©¢(f1v) =0 and, from the symmetryy(f,v) = 0. This proves
to fs and f-. Hence, the only possible other edges #rg; (e claim forg = 0.

and f, f-. Therefore,B is of the B; type. This proves Lemma Next, suppose thaj > 1. It follows from the induction
31 m hypothesis thaia(e) = 0 for all e € (E(F) U E(P)) \

{pPg—1p4}. Let M be a matching 7’ that covers all neighbors
Lemma 3.2:Let G be anF-free graph and leB be a block ©of v but not v itself. Let M, be a maximal matching in

of G. Suppose thaB contains no cycle of length at least G|(V(F) U V(P)) that coversv and let M, be a maximal
Then B is of the B, type. matching inG \ (V(F)UV(P)) that does not cover. Since

Proof: Since B has no cycle of length at leastand B M U M; and M U M, are maximal matchings, it follows
has no cut-node, it follows from Theorem 3.4 that eitfieis  that a(M;) = a(Mz). Since a(Mz) = 0, it follows that
a bipartite graph, o is isomorphic toK, or B isomorphic @(pq-1p,) = 0. This proves Lemma B.1. u
to K{t. In the latter two cases, we are done. So suppose that
B is a bipartite graph. LeV(G) = X UY such thatX and Lemma 3.3: D}'? fails SLoP for allp,q € {5,7}, k > 0.
Y are independent sets. |IK| < 1, thenz € X is a cut-node, Proof: Let £ > 0, p,¢q € {5,7} and suppose thab}"
a contradiction. From the symmetry, it follows tha| > 2 satisfies SLoP. Then there exists a good edge weighting
and|Y| > 2. Now supposer € X is non-adjacent tg € Y. for D). It follows from Lemma B.1 applied taD}? that
Since B is 2-connected, it follows that there are two edgex(e) = 0 for all e € E(D}?). This is clearly not a good edge
disjoint pathsP; and P, from z to y. Sincexz and y are weighting for D}*?, a contradiction. This proves Lemma 3.3.
non-adjacent and3 is bipartite, it follows that| E(P;)| > 3 |
and |E(FP»)| > 3. But now z-P;-y-P-z is a cycle of length
at least six, a contradiction. It follows thaf is complete Lemma 3.4: Let G be a graph and let, 2’ € V(G) be
to Y. If [X] > 3 and|Y| > 3, then clearly,B contains a such thatdeg(z) = deg(z') = 2 andz’ is a clone ofr. Then
cycle of length six, a contradiction. Therefore, at least o G satisfies SLoP.
X, Y has size exactlf. Hence,B is isomorphic toK ; with Proof: Let 2 andz’ be as in the claim and Idtz;, 2o} =
t = max{|X|, Y|} and thereforeB is of the B> type. This N(z). Definea € [0, 1]'"! by
proves Lemma 3.2.

From the symmetry, we may assume that 1. If f; is

1/2 if e is incident withz; or zo, ande # z1 29
Lemma B.1:Let m € {5,7} and letq > 0. Let ' be a (¢) ={ 1 if e =229
graph and lef” be am-cycle disjoint fromG’. Letv € V(&)
such that there exists a matchingitithat covers all neighbors
of v in G’, but notw itself. LetG be the graph constructed fromTo see that is a good edge weighting fof, let M be a
the disjoint union ofG’ and F' by adding a pathP of length maximal matching inG’. If 2120 € M, then no other edge
q betweenf € V(F) andv. Then every good edge weightingin M is incident withz; or z; and hence)_ ., a(e) = 1.

0 otherwise

a for G satisfiesa(e) = 0 for everye € E(F) U E(P). Therefore we may assume thatz, ¢ M. It suffices to show
Proof: Let f1, fo,..., fn be the nodes off" in order thatM covers both; andz,. So let us assume to the contrary
and letpi,ps,...,p, be the nodes of?. We may assume thatM does not covet,. SinceM is a matching, at most one

that f = f,,, p1 = f andp, = v. We use induction on of zzs,2'z, is in M. From the symmetry, we may assume
q. First suppose thag = 0, i.e. v = f,,. We will prove thatxzy ¢ M. But now we may add:z; to the matching and



obtain a larger matching, contary to the maximality faf.
This proves Lemma 3.4. [ |

Lemma 3.5: Every connected-free graph satisfies SLoP.
Proof: The proof is by induction on|E(G)|. Let

{B1,Bs,...,B,} be the block decomposition ¢f. It follows
from Theorem 3.3 thaB; is either of theB3; type or of the
B type, and for at most one value §fB; is of the B, type.
Since, inductively, every proper subgraph(@fsatisfies SLoP,
it suffices to find a good edge weighting for G.

Suppose first that? has a leaf blockB; of the B type. If
q = 2, then letz be the cut-node off in V(B;). If ¢ =1, let
x € V(B;) be arbitrary. There are four cases:

(1) B; is isomorphic toK5: let 2,v denote the nodes of

to M to obtain a larger matching, a contradiction. It
follows that} " _,, a(e) = 1. Since this is true for every
maximal matchingM of G, it follows that« is a good
edge weighting forG. This solves the case wheB; is
isomorphic toK;f2 andz € V,. So we may assume this
is not the case.

We claim thatB; contains two nodeg, p’ of degree 2
such thatp’ is a clone ofp. Suppose that € V4. Then
letp = z1, p’ = 2o. It follows thatdeg(p) = deg(p’) =2
andp’ is a clone ofp. Therefore, we may assume that
x € V. We may assume that= z;. Suppose thals| >

3. Then letp = 29, p’ = z3. It follows that deg(p) =
deg(p’) = 2 andp’ is a clone ofp. So we may assume that
|Vz| = 2. From the above, it follows thdg; is isomorphic

(@)

®3)

(4)

B;. Let a(e) = 1 for all edges incident withz and
a(e) = 0 for every other edge. Let M/ be a maximal
matching inG. If zv € M, then, sincelM is a matching,
M does not contain any other edgewith a(e) = 1

to Ko 2. Letp = y1, p' = yo. It follows that deg(p) =

deg(p’) = 2 andp’ is a clone ofp.

Now the result follows from Lemma 3.4.
Thus, we may assume tha@tdoes not have a leaf block of
and, hence)_ ., a(e) = 1. If zv € M, then, sinceM  the B, type. Since ifg > 2, G has at least two leaf blocks,
is maximal, M contains an edge incident with and, and hence at least one leaf block of tBe type, we may
hence,) .., a(e) = 1. Since this is true for every assume thay = 1 and G = B, is of the B; type. First
maximal matching) of G, it follows thata is a good suppose that’ (G) \ V(C) # 0. Then it follows from the
edge weighting foiG. definition of B; that there exist two nodes, 2z’ such that
B; is isomorphic toK3: let , v, vo denote the nodes of deg(x) = deg(z') = 2 and N(z) = N(z'). It follows from
B; and leta(e) = 1 for all e € E(B;) anda(e) = 0 for |emma 3.4 that there exists a good edge weightingGor
every other edge. Let M be a maximal matching i*.  So we may assume that(G) = V(C). Suppose first that
If vivo € M, then, sincelM is a matching,M does not f — 5. Recall that it follows from the definition oB; that
contain either ofrvy, zvp and, hencey .., a(e) =1. G is a5-cycle plus some arbitrary additional edges. Clearly,
If vive ¢ M, then, sinceM is maximal andM is a no maximal matching has size Hence, sincdV (G)| = 5,
matching, exactly one ofwvi,zv; is in M and, hence, it follows that every maximal matching i6 has size exactly
> e @(e) = 1. Since this is true for every maximal2, Therefore,a(e) = 1/2 for all e € E(G) is a good edge
matching M of G, it follows that « is a good edge weighting for G. So we may assume that= 7. Clearly, G
weighting forG. has no maximal matching of siZelt is also easy to see that
B; is isomorphic toK: let z, vq, v2, v3 denote the nodes has no maximal matching of siZe Hence, sinceéV (G)| = 7,
of B; and leta(vivz2) = a(vivz) = afvavz) = 1 it follows that every maximal matching i6f has size exactly
anda(e) = 0 for all e € (E(G) \ {viv2,v1vs,v203}). 3 and thereforex(e) = 1/3 for all e € E(G) is a good edge
To see that this is a good edge weighting, gt be weighting forG. This proves Theorem 3.1. ]
a maximal matching inG. Suppose that\/ does not
contain any of the edges vs, vivs, vov3. SinceM does  Lemma 3.6:|E(G)| < 2|V (G)| for every F-free graphG.
not containvyvs and M is maximal, it follows that Proof: We may assume that is connected, because if
M contains eitherv, or zvs. Assume without loss of not, then the lemma follows from considering each connected
generality thatrv; € M. Now we may addrvs to M to  component ofG. We first claim that F(B)| < 2|V(B)| for
obtain a larger matching, a contradiction. It follows thaall B € B,. Let B € B; and letC be a longest cycle in
> ecar @(e) = 1. Since this is true for every maximal B. It follows from the definition ofB3, that|V (C)| € {5, 7}.
matching M of G, it follows that o is a good edge Clearly, we haveE(B;)| < |V(C)|+5+2(|V(B;)\V(C)|) <
weighting forG. 21V(CO)| +2(|V(B;)| — |[V(C)]) = 2|V(B;)|. This proves the
B, is isomorphic toK> ; or K{t for somet > 2: let claim. Next we claim thatF(B)| < 2|V(B)|—2 for all B €
V(B;) = V1UV; such thatV; | = 2 andV% is an indepen- Bs. If B is isomorphic toky, then|E(B)| = 6 = 2|V (B)|—2.
dent set. Let, = {y1,y2} and letVa = {z1, 22, ...,2¢}. If B is isomorphic toK,; or Kgft for somet > 1, then
First suppose thaB; is isomorphic toK3, andz € V.  |E(B)| <1+ 2(]V(B)| —2) < 2|V(B)| — 2. This proves the
We may assume that = z;. Seta(y;22) = a(y222) = claim.
a(y1y2) = 1 and a(e) = 0 for all other edgese. Now let G be anF-free graph and le{By, Bs, ..., B,} be
Let M be a maximal matching irdiz. Suppose thaf\/ the block decomposition a¥. We prove by induction on that
does not use any of the edg@szs, y222,y1y2. Since |E(G)| < 2|V(G)|. If ¢ = 1, it follows immediately from the
M is a matching, at least one of the edges, zy. above thalE(G)| = |E(B;)| < 2|V(B1)| = 2|V(G)|. Next,
is not in M, say zy;. But now we may addy,z2 letg > 2. SinceG has at least two leaf blocks and at most one



block is in5;, we may choosésuch thatB; is a leaf block and Proof: We may assume th&t is connected. By Theorem
B; is of the B, type. Leta be the unique cut-node @ that 3.1 and Theorem 3.3, it suffices to check whetieadmits the
lies in B;. By induction, the grapl|(V (B;)\{z}) has at most structure described in Theorem 3.3. We propose the follgwin
2(JV(G)| — |V(B;)| + 1) edges. From the above, singg is algorithm. Letn = |V(G)| and m = |E(G)|. First we
of the B, type, it follows that| E(B;)| < 2|V (B;)|—2. Hence, check thatm < 2n, because otherwis€&' is not F-free by
we havelE(G)| < 2(|]V(G)|—|V(B;)|+1)+2|V(B;)]—2 = Lemma 3.6 and we stop immediately. Now, construct the block
2|V(G)|. This proves Lemma 3.6. B decompositio By, Bs, ..., B,} of G. This can, in general, be
done inO(n + m) time (see e.g. [11]). However, since we
Lemma B.2:It can be decided ifD(|V (B)|) time whether know thatm < 2n, this step actually take®(n) time. For
a given graphB is of the B; type. each blockB;, we test whetheB; is of the B, type. This can
Proof: We may assume thaE(B)| < 2|V (B)|, because be doneO(|V (B;)|) time by Lemma B.3. If{G has more than
if not, then it follows from Lemma 3.6 thaB is not of the one block that is not of thé3, type, thenG is not F-free
BB, type. Bodlaender [2] proved that, for any fixédfinding a and we stop. If we encounter no such block, tliers F-free
cycle of length at least in a given graphi, if it exists, can and we stop. So leB* be the unique block that is not of the
be done inO(k!2%|V (H)|) time. The following algorithm uses B type. It follows from Lemma B.2 that it can be decided in
Bodlaender’s algorithm multiple times to recognize graphs O(|V (B*)|) time whetherB* is of the B; type or not. If it

the B; type. is, thenG is F-free and we stop. If not, the@ is not F-free
(1) Forp =8,7,6,5, do: and we stop. This proves Theorem 3.2. [ |
Check if B contains a cycle of length or more. If
so, letF' be the cycle and go to step (3). APPENDIXC
(2) B does not contain a cycle of length or larger, and FULL PROOFS OF THE RESULTS INSECTION IV

hencel is not of theB, type and we return NO. Lemma C.1:Let G be a bipartite graph with bipartition
(3) Letk = [V(F)|. If k € {6,8}, then B is not of the3, X,Y. If | X| >k anddeg(xz) > k for all x € X, then every
type and we return NO. Lefi, fo,..., fx be the nodes . .nq matEhing in> has size at least.
of I in order. Itk =7, check that the ‘inner edges’ of Proof: The proof is by induction ork. The lemma is
F are as in the definition oB;. If not, B is not of the clearly true fork — 0. So letk > 1. Let M be a maximal
By t}’pe and we return NO. matching inG. Since X is not anticomplete td”, it follows
Forie{1,2,...,k}, do: that M contains an edgey with z € X, y € Y. Let M’ =
Let 4; be the nodes iV (B)\V (F) that are adjacent M\{zy}, X' = X\ {2}, Y’ = Y\{y} andG’ = G|(X'UY").
to exactly f;_y and fi1. If |A;| > 1 anddeg(fi) # Clearly, M’ is a maximal matching i/, | X’| > k — 1 and
2, then B is not of theB3, type and we return NO. deg ., (2/) > k — 1 for all 2/ € X'. Hence, it follows by
If Y% |Ai| + |V(F)| < |[V(B)|, then B is not of the induction that{A/’| > k — 1 and therefore that\/| > k. m
B, type and return NO.

(4) B is of the B, type and we return YES. Lemma 4.2: Let G be a bipartite graph withu(G) < 4.
It is not hard to verify that this algorithm take3(|V (B)|) Theno(G) > 2/3.
time. This proves Lemma B.2. ] Proof: Write v = v(G) and = p(G). It follows from

Lemma 4.1.(b)-(c) that we may assume thag(v) > 3 for
Lemma B.3:It can be decided iD(|V (B)|) time whether all v € V(G). If u > 2v, theno(G) > 2 by Lemma 2.1. We
a given graphB is of the B, type. may therefore assume that< %u.

Proof: We may assume thaF'(B)| < 2|V (B)|, because Let V(G) = X UY such thatX andY are independent
if not, then it follows from Lemma 3.6 thaB is not of the3,  sets. LetM* be a maximal matching of size. Let A, B be
type. Clearly, it can be checked in constant time whefBés the set of nodes inX, Y, respectively, that are covered by
isomorphic toKs, K3, K4, K22 orKrj_Q. So we may assume M*. LetC =Y \ BandD = X \ A. SinceM* is maximal,
that B is either isomorphic td<, ; or K;t for somet > 3, or it follows thatC' is anticomplete taD. Moreover, by this and
B is not of theB, type. LetX C V(B) be the set of nodes of the fact thatdeg(v) > 3 for all v € V(G), everyc € C has at
degree 2. IfX| # |V(B)| — 2, then B is not of theB, type least three neighbors i, and everyd € D has at least three
and we may stop. Otherwise, I¢t1,a2} = V(B)\ X. We neighbors inB.
need to check thaX is an independent set addlis complete  Let Eap, Eac, Epp be the edges betweea and B, A
to {a1,as}. If so, thenB is of the 3; type and we may stop. andC, and B and D, respectively. Sinc€’ is anticomplete to
If not, then B is not of the3, type and we may stop. Notice D, it follows that E(G) = Eap U Eac U Egp.
that, since|E(B)| < 2|V (B)|, the check above can be done We claim that: )
in O(|E(B)|) time. This proves Lemma B.3. [ | |C|, |D| > S (6)

Theorem 3.2:1t can be decided i®(|V (G)|) time whether Proof of the claim: Suppose to the contrary tha®| < u
a network graplt: satisfies OLoP under primary interferenceand letA be a maximal matching ir. Let My = M NE4p,



My = M N Eac, Ms = M N Egp. First, we have M| <
|C| < %u. Second, since every edge iM; U M3 covers a
unique node inB, it follows that [M; U M3| < |B| = p.
Therefore,[M| < 24. Since this is true for every maximal
matching M, it follows that v < %N- But this means that
1 > 2v, contrary to our assumption. Hend€;| > 1 and,
by the symmetry, thatD| > 1. This proves the claim.

If © < 2, then, since every node i@ has at least three
neighbors in4, it follows that|C| = 0, contrary to (6). Hence,
w € {3,4}. It follows from (6) and ifu = 3, then|C|, |D| > 2,
and if 4 = 4, then|C|, |D| > 3. Define

a(e)* i ifeEEAB
P if e€ EqcUERD.

We need to prove thaté < > ., a(e) < 1 for every
maximal matchingV/ in G. So letM be a maximal matching
in G. Since every edge i/ is incident with a node oAU B,

it is easy to see thay, _,, a(e) < 1. Letk = |[M N Eap|.
It suffices to show thatM N Eac| > n — k — 1 and that
|M N Egp| > u—k— 1, because if so, then

Za(e)zkxl+2x(u—k—1)x2i
ec M K H
up—1_ 2

- 23, for u € {3,4}.
From the symmetry, it even suffices to show thetNE 4| >
u—k—1.To do so, letd’ be the nodes ofl that are not covered
by M. We may assume thdt < pu — 1, because otherwise
there is nothing to prove. Consider the graph= G|(A’UC).
Clearly, we haveC| > p—k—1,degqi(¢c) > 3—k > p—k—1
for all ¢ € C. Moreover,M N E ¢ is a maximal matching
in G’. Hence, it follows from Lemma C.1 thad/ N Eac| >
u—k — 1. This proves Lemma 4.2. |

APPENDIXD
FULL PROOFS OF THE RESULTS INSECTION V

Observation 5.1: 0*(Fy,) < (%)k for all & > 1.

Proof: Clearly, everyFj, is vertex-transitive. Let us con-
sider F»>. A maximum independent set i, can be constructed
by first choosing three non-consecutive 6-cycles and, next,
choosing three non-consecutive nodes from each of these
three 6-cycles. It is clear that this constitutes a maximum
independent set and its size3is 3 = 9. A minimum maximal
independent set irf, can be constructed by choosing two
opposite 6-cycles and, next, choosing two opposite nodes fr
each of these two 6-cycles. This gives a maximal independent
set of size2 x 2 = 4. SinceF; is vertex-transitive, it follows
from a direct extension of Lemma 2.1 to interference graphs
that o(F,) = 4/9 and hencer*(Fy) < 4/9. This reasoning
extends easily to the general case, where we méig) = 3*
and7i(F},) = 2. Thereforeo*(F},) < (%)]C |



