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Abstract—Efficient operation of wireless networks and switches
requires using simple (and in some cases distributed) scheduling
algorithms. In general, simple greedy algorithms (known as
Greedy Maximal Scheduling - GMS) are guaranteed to achieve
only a fraction of the maximum possible throughput (e.g.,50%
throughput in switches). However, it was recently shown that in
networks in which the Local Pooling conditions are satisfied, GMS
achieves100% throughput. Moreover, in networks in which the
σ-Local Pooling conditions hold, GMS achievesσ% throughput.
In this paper, we focus on identifying the specific network
topologies that satisfy these conditions. In particular, we provide
the first characterization of all the network graphs in which
Local Pooling holds under primary interference constraints (in
these networks GMS achieves100% throughput). This leads to
a linear time algorithm for identifying Local Pooling-sati sfying
graphs. Moreover, by using similar graph theoretical methods,
we show that in all bipartite graphs (i.e., input-queued switches)
of size up to 7×n, GMS is guaranteed to achieve 66% throughput,
thereby improving upon the previously known 50% lower bound.
Finally, we study the performance of GMS in interference graphs
and show that in certain specific topologies its performance
could be very bad. Overall, the paper demonstrates that using
graph theoretical techniques can significantly contributeto our
understanding of greedy scheduling algorithms.

Index Terms—Local pooling, scheduling, throughput maxi-
mization, graph theory, wireless networks, switches.

I. I NTRODUCTION

The effective operation of wireless and wireline networks
relies on the proper solution of the packet scheduling problem.
In wireless networks, the main challenge stems from the need
for a decentralized solution to a centralized problem. Even
when centralized processing is possible, as is the case in input-
queued switches, designing low complexity algorithms that
will enable efficient operation is a major challenge.

A centralized joint routing and scheduling policy that
achieves the maximum attainable throughput region was pre-
sented by Tassiulas and Ephremides [27]. That policy applies
to a multihop network with a stochastic packet arrival process
and is guaranteed to stabilize the network whenever the arrival
rates are within the stability region (i.e., it provides 100%
throughput). The results of [27] have been extended to various
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settings of wireless networks and input-queued switches (e.g.,
[1], [9], [22]). However, algorithms based on [27] require the
repeated solution of aglobal optimization problem, taking into
account the queue backlog of every link. For example, even
under simple primary interference constraints1, a maximum
weight matching problem has to be solved in every slot,
requiring anO(n3) algorithm.

Hence, there has been an increasing interest in simple
(potentially distributed) algorithms. One such algorithmis the
Greedy Maximal Scheduling(GMS) algorithm (also termed
Maximal Weight Scheduling or Longest Queue First - LQF).
This algorithm selects the set of served links greedily accord-
ing to the queue lengths [12], [20]. Namely, at each step, the
algorithm selects the heaviest link (i.e., with longest queue
size), and removes it and the links with which it interferes
from the list of candidate links. The algorithm terminates when
there are no more candidate links. Such an algorithm can be
implemented in a distributed manner [12], [17], [18].

It was shown that the GMS algorithm is guaranteed to
achieve 50% throughput in switches [7] and in general graphs
under primary interference constraints [20]. It also was proved
in [4], [25], [29] that under secondary interference constraints2

the throughput obtained by GMS may be significantly lower
than the throughput under a centralized scheduler.

Although inarbitrary topologiesthe worst case performance
of GMS can be very low, there are some topologies in
which 100% throughput is achieved. Particularly, Dimakis
and Walrand [8] presented sufficient conditions for GMS to
provide 100% throughput. These conditions are referred to as
Local Pooling (LoP) and are related to the structure of the
network. Based on these conditions, it was shown that GMS
achieves maximum throughput in tree network graphs under
k-hop interference (for anyk) [16], [30], in 2 × n switches
[3], and in a number of interference graph classes [30].

The LoP conditions were recently generalized to provide

1Primary interference constraints imply that each pair of simultaneously
active links must be separated by at least one hop (i.e., the set of active links
at any point of time constitutes a matching).

2Secondary interference constraints imply that each pair ofsimultaneously
active links must be separated by at least two hops (links). These constraints
are usually used to model IEEE 802.11 networks [4].
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the σ-Local Pooling (σ-LoP) conditions under which GMS
achievesσ% throughput [15], [16] (the conditions were refor-
mulated in [19]). Using these conditions, lower bounds on the
guaranteed throughput in geometric graphs [16] and in graphs
under secondary interference constraints [18] were obtained.

From a practical point of view, identifying graphs that
satisfy LoP andσ-LoP can provide important building blocks
for partitioning a network (e.g., via channel allocation) into
subnetworks in which GMS performs well [3]. Another pos-
sible application is to add artificial interference constraints to
a graph that does not satisfy the LoP conditions in order to
turn it into a LoP-satisfying graph. Adding such constraints
may decrease the stability region but would enable GMS to
achieve a large portion of the new stability region.

While it is known that under primary interference some
graph families (mainly trees and2×n bipartite graphs) satisfy
LoP, the exact structure of networks that satisfy LoP was not
characterized. In this paper, we use graph theoretic methods
to obtain the structure ofall the network graphs that satisfy
LoP under primary interference constraints(in these networks
GMS achieves 100% throughput). This allows us to develop an
algorithm that checks if a network graph satisfies LoP in time
linear in the number of vertices, significantly improving over
any other known method. We note that although primary inter-
ference constraints may not hold in many wireless networking
technologies, the characterization provides an importantthe-
oretical understanding regarding the performance of simple
greedy algorithms. It also shows that the2 × n switch is the
largest switch for which 100% throughput is guaranteed.

We then focus on graphs in which GMS does not achieve
100% throughout. We consider bipartite network graphs (i.e.,
input-queued switches) and show thatfor bipartite graphs
of size k × n, where k ≤ 7 and n is arbitrary, GMS
achieves at least 66% throughput. Namely, for switches with
up to 7 inputs or 7 outputs, the throughput under GMS is
bounded from below by 66%. This significantly improves upon
the well known 50% lower bound [7] and confirms many
simulation studies (e.g., [10]) in which it was shown that
greedy algorithms perform relatively well in switches. To show
that this result does not extend to all bipartite graphs, we show
that there exists a10× 10 bipartite graph for whichσ = 0.6.

Finally, we consider interference graphs3 and categorize dif-
ferent graph families according to theirσ values. In particular,
we show that all co-strongly perfect graphs satisfy LoP. This
class encapsulates all the classes of perfect LoP-satisfying
interference graphs that were identified before (i.e., chordal
graphs, interference graphs of trees, etc.). The observation
increases the number of graphs known to satisfy LoP by an
order of magnitude. Regardingσ-LoP we show that there are
graphs with arbitrarily lowσ. Since the worst case specific
graph identified up to now hadσ = 0.6 [15] and the lowest
lower bound known for a graph family was 1/6 [16], [18],

3Although it has been recently shown that in some cases the interference
graph does not fully capture the wireless interference characteristics [23], it
still provides a reasonable abstraction. Extending the results to general SINR-
based constraints is a subject for further research.

this provides an important insight regarding graphs in which
GMS may have bad performance. We conclude with briefly
describing a simulation study that compares the performance
of GMS to the optimal algorithm in graphs with lowσ.

To conclude, the main contributions of this paper are two-
fold: (i) a characterization ofall network graphs in which
Local Pooling holds under primary interference constraints (in
these network graphs Greedy Maximal Scheduling is guaran-
teed to achieve 100% throughput) and (ii) improved lower
bounds on the throughput performance of Greedy Maximal
Scheduling in small switches. Overall, the paper demonstrates
that using graph theoretical techniques can significantly con-
tribute to our understanding of greedy scheduling algorithms.

This paper is organized as follows. In Section II we present
the model. We characterize all graphs that satisfy LoP under
primary interference constraints in Section III. In Section IV
we show that GMS achieves 66% throughput in switches
with up to 7 inputs. We study the performance of GMS in
interference graphs in Section V and we conclude and discuss
open problems in Section VI.

II. M ODEL AND PRELIMINARIES

In this section, we first present the network model under
primary interference and then extend it for general interfer-
ence. We also provide some graph theoretic definitions and
derive results for graphs that exhibit certain symmetry.

A. Network Graphs

Consider anetwork graph G = (V, E), where V =
{1, . . . , n} is the set of nodes, andE ⊆ {ij : i, j ∈ V, i 6= j} is
a set of links indicating pairs of nodes between which data flow
can occur. Following the model of [3], [8], [15], [27], assume
that time is slotted and that packets are of equal size, each
packet requiring one time slot of service across a link. The
model considers only single-hop traffic. A queue is associated
with each edge in the network. We assume that the stochastic
arrivals to edgeij have long term ratesλij and are independent
of each other. We denote by~λ the vector of the arrival rates
λij for every edgeij. For more details regarding the queue
evolution process under this model, see [3], [8], [15].

For a graphG, let M(G) be a 0-1 matrix with|E| rows,
whose columns represent the maximal matchings ofG. A
scheduling algorithmselects a set of edges to activate at each
time slot and transmits packets on those edges. Since they
must not interfere under primary interference constraints, the
selected edges form a matching. In other words, the scheduling
algorithm picks a columnπ(t) from the maximal matching
matrixM(G) at every time slott. If πk(t) = 1, one of the two
nodes along edgeek can transmit, and the associated queue is
decreased by one. We define thestability region(or capacity
region) of a network as follows.

Definition 2.1 (Stability region [27]):The stability region
of a networkG is defined by

Λ∗ =
{

~λ |~λ < ~u for some~u ∈ Co(M(G)),
}

,



where Co(M(G)) is the convex hull of the columns of
M(G) (inequality operators are taken element-wise when their
operands are vectors).

A stable scheduling algorithm (which we also refer to as
a throughput-optimalalgorithm or an algorithm thatachieves
100% throughput) is defined as an algorithm for which the
Markov chain that represents the evolution of the queues is
positive recurrent for all arrivals~λ ∈ Λ∗. It was shown in
[27] that the Maximum Weight Matching algorithm that selects
the matching with the largest total queue sizes at each slot
is stable. When an algorithm is not throughput-optimal, the
efficiency ratioγ∗ indicates the fraction of the stability region
for which the algorithm is stable (in simple words, the queues
are bounded for all arrival rates~λ ∈ γ∗Λ∗).

We briefly reproduce the definitions of Local Pooling (LoP)
presented in [3], [8].4 In the following, e denotes the vector
having each entry equal to one.

Definition 2.2 (Subgraph Local Pooling - SLoP): A net-
work graphG satisfies SLoP, if there existsα ∈ [0, 1]|E| such
that αT

M(G) = e
T .

This definition also corresponds to associating a weight,
denotedα(e), to all edgese ∈ E, such that

∑

e∈Z

α(e) = 1 for every maximal matchingZ in G.

If a vectorα satisfies the above condition, we will say that it
is a good edge weighting.

Definition 2.3 (Overall Local Pooling - OLoP): A net-
work graph G satisfies OLoP, if every subgraphS of G
satisfies SLoP.

In [8], Dimakis and Walrand proved that if a graph satisfies
OLoP, GMS achieves 100% throughput. In networks in which
OLoP is not satisfied,σ-Local Pooling [15], [16] provides a
way of estimating the efficiency ratioγ∗ of GMS. Below, we
provide a different definition calledσ-SLoP that is equivalent
to the original one from [15], [16].

Definition 2.4 (σ-SLoP - Xi et. al. [19]): A network
graph G satisfiesσ-SLoP, if and only if there exists a vector
α ∈ [0, 1]|E| such that

σe
T ≤ αT

M(G) ≤ e
T .

Clearly, if a graph satisfiesσ-SLoP, it also satisfiesσ′-SLoP
for every σ′ < σ. Therefore, it is sufficient to focus on the
largest value ofσ such thatG satisfiesσ-SLoP. This value is
denoted byσ(G):

σ(G) := max {σ | G satisfiesσ-SLoP} . (1)

This definition can also be written in terms of a Linear
Program whose solution yields theσ(G) for a given graph
G [19]:

σ(G) = max σ (2)

subject toσe
T ≤ αT

M(G) ≤ e
T .

4This definition slightly differs from that in [3] by setting the sum equal
to e

T instead ofceT , wherec is a positive constant.

We say that a graph satisfiesσ-OLoP, if all of its subgraphs
satisfyσ-SLoP. We can then define the local pooling factor of
a graph as follows:

Definition 2.5 (Joo et. al. [15]): The local pooling factor
σ∗(G) of a network graphG is the largest value ofσ for
which σ-SLoP is satisfied for all subgraphsS.
This definition can also be written in terms ofσ(S):

σ∗(G) := min {σ(S) | for all subgraphsS of G} . (3)

It was proved in [15] that the local pooling factorσ∗ of
a graph is equal to the efficiency ratioγ∗ of GMS in that
graph. For instance, if a graph has a local-pooling factor of
2/3, GMS is stable for all arrival rates~λ ∈ 2

3Λ∗ and therefore
achieves66% throughput. Note thatσ∗(G) = 1, if and only
if G satisfies the OLoP condition.

B. Interference Graphs

We now generalize the model by introducing interference
graphs. Based on the network graph and the interference
constraints, the interference between network links can be
modeled by aninterference graph(or a conflict graph)
GI = (VI , EI) [14]. We assignVI = E. Thus, each edge
ek in the network graph is represented by a nodevk in
the interference graph, and an edgevivj in the interference
graph indicates a conflict between network graph linksei

and ej (i.e., transmissions onei and ej cannot take place
simultaneously). Under primary interference, the interference
graphGI corresponds to theline graphof G.

The model and the LoP theory described so far extend to
interference graphs. The nodes ofGI correspond to queues
to which packets arrive according to a stochastic process
at every time slot. A scheduling algorithm must pick an
independent set at each slot so that neighboring nodes will
not be activated simultaneously. Each column of the matrix
M(GI) corresponds to a maximal independent set ofGI . An
algorithm which selects the independent set with the largest
weights (i.e., solves the Maximum Weight Independent Set
Problem) is stable. SLoP corresponds to finding a vector
α ∈ [0, 1]|VI | that assigns a weightα(u) to each nodeu
such that

∑

u∈I α(u) = 1 for every maximal independent set
I in GI . If such a vector exists, we will call it agood node
weighting. For OLoP to be satisfied, SLoP must be satisfied
by all inducedsubgraphs (i.e., with respect to node removals).
σ-SLoP andσ-OLoP extend to this case in a very similar way.

C. Graph Theoretic Definitions

We briefly review some definitions from graph theory that
are required in the following sections (for details, see [28]).
For a graphG, we denote byN(v) the set of neighbors ofv
and bydeg(v) = |N(v)| the degree ofv. For x, y ∈ V (G),
we say thatx is a clone ofy if N(x) = N(y). We say that
X ⊆ V (G) is a clique (independent set) if the vertices inX
are pairwise adjacent (non-adjacent). A matchingM is said to
covera vertexv, if there exists an edge inM that is incident
with v. Forx ∈ V (G), we denote byG−x the graph obtained
from G by deletingx and all edges incident with it. Aninduced



subgraph ofG is a subgraph ofG that can be obtained from
G by repeatedly deleting a vertex and all edges incident with
it. For two graphsG1, G2, an isomorphism fromG1 to G2

is a bijectionφ : V (G1) → V (G2) such thatuv ∈ E(G1),
if and only if φ(u)φ(v) ∈ E(G2). Two graphsG1, G2 are
isomorphic, if there exists an isomorphism fromG1 to G2.
An automorphism ofG is an isomorphism fromG to itself.
A graphG is edge-transitive, if for all uv, wx ∈ E(G), there
exists an automorphismφ of G such thatφ(u)φ(v) = wx. A
graphG is vertex-transitive, if for all u, v ∈ V (G), there exists
an automorphismφ of G such thatφ(u) = v. For k ≥ 1, we
say thatG is k-connectedif for every two distinct vertices in
G, there existk vertex-disjoint paths between them. A graph
is connected if it is 1-connected. Aconnected component of
G is a maximal connected induced subgraph ofG. Finally, for
n ≥ 1, we letKn denote the complete graph onn nodes and,
for t ≥ 1, we let Kt,n denote thet × n complete bipartite
graph.

D. σ(G)–values and Bounds onσ(G)

We now describe a simple method to compute a lower
bounds onσ(G) and provide a method for calculatingσ(G)
of edge- and vertex-transitive graphs. These are graphs that
exhibit a high degree of symmetry (e.g., cycles). We will use
the following notation:

ν(G) = max{|Z| : Z is a maximal matching inG},

µ(G) = min{|Z| : Z is a maximal matching inG}.

The following lemma presents a lower-bound onσ(G) [18].
Lemma 2.1 (Leconte et al. [18]):For any graph G,

σ(G) ≥ µ(G)/ν(G) .
Using Definition 2.4, we provide an alternative proof to this
lemma in Appendix A. To demonstrate the benefits of theσ-
OLoP definition, we provide a very simple proof to the fact
that GMS achieves50% throughput in any network graphG
(shown in different methods in [7], [20]). First, note that the
size of any maximal matching is at least half the size of a
maximum matching [24], which means thatµ(G) ≥ ν(G)/2,
for all G. By Lemma 2.1 and (3), it follows thatσ∗(G) ≥ 1/2
for every graphG, and therefore thatγ∗ ≥ 1/2.

For edge-transitive graphs, the following lemma is a
stronger counterpart of Lemma 2.1 (the proof is in Appendix
A):

Lemma 2.2:If G is edge-transitive, thenσ(G) =
µ(G)/ν(G).

The lemmas introduced previously also extend to general in-
terference graphs. We define the independent set counterparts
of µ(G) andν(G) as follows:

ν(G) = max{|S| : Z is a maximal independent set inG},

µ(G) = min{|S| : Z is a maximal independent set inG}.

It is easy to generalize Lemma 2.1 to interference graphs
G and show thatσ(G) ≥ µ(G)/ν(G). For vertex-transitive
graphs, the following is proved in Appendix A:

Lemma 2.3:If G is vertex-transitive, thenσ(G) =
µ(G)/ν(G).
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which fail OLoP under primary interference. Graph (c): the Petersen graph.
This graph does not satisfy OLoP because it contains, among other graphs,
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(bold edges) as subgraphs.

III. N ETWORK GRAPHS THAT SATISFYOLOP UNDER

PRIMARY INTERFERENCE

Only a small collection of network graphs have been shown
to satisfy OLoP under primary interference. Among the known
cases are trees [3], [16], and2 × n bipartite graphs [3]. The
main result of this section is adescription of the structure of all
network graphsthat satisfy OLoP under primary interference.
This structure shows that such graphs are relatively easy to
construct and, moreover, they can berecognized in linear time.
The proofs of the results can be found in Appendix B.

Define the following families of graphs. Fork ≥ 3, let
Ck be a cycle withk edges (or, equivalently,k nodes). For
k ≥ 0 and p, q ∈ {5, 7}, let Dp,q

k be the graph formed by
the union of two cycles of sizep and q joined by ak-edge
path (wherek ≥ 0). If k = 0, the cycles share a common
node (see Fig. 1-(a) and 1-(b)). LetF = {Ck

∣

∣ k ≥ 6, k 6=
7} ∪ {Dp,q

k

∣

∣ k ≥ 0; p, q ∈ {5, 7}}. For two graphsG andH ,
we say thatG containsH as a subgraph ifG has a subgraph
that is isomorphic toH . We will say that a graphG is F -free,
if it does not contain any graphF ∈ F as a subgraph.

We will focus on connected graphs, because it is easy to
see that a graph satisfies OLoP, if and only if all its connected
components satisfy OLoP. So we may assume without loss of
generality that all graphs in this section are connected graphs.

The results in this section are three-fold. First, in Subsection
III-A, we give a structural description of allF -free graphs.
Second, in Subsection III-B, we will use this description to
prove the following theorem:

Theorem 3.1:A network graphG satisfies OLoP under
primary interference, if and only ifG is F -free.

Theorem 3.1 shows that if a network graphG does not
satisfy OLoP under primary interference, thenG contains
someF ∈ F as a subgraph. For example, it was previously
shown that the Petersen graph (Fig. 1-(c)) fails OLoP [15].
Using Theorem 3.1 we can immediately see this from the fact
that it contains, for example,C6 andD5,5

1 as a subgraph.
Testing whether a network graph satisfies SLoP previously

required enumerating all maximal matchings (of which there
are an exponential number) and solving a Linear Program
[8]. To test the OLoP condition, this procedure had to be
repeated for every subgraph. The weakness of this approach is
its large computational effort. In Subsection III-C, we present
the third result, which uses the structure ofF -free graphs to
construct an algorithm that decides in linear time whether a
graph satisfies OLoP, as described in the following theorem:



Theorem 3.2:It can be decided inO(|V (G)|) time whether
a network graphG satisfies OLoP under primary interference.

A. The Structure ofF -free Graphs

We will start with a structural description ofF -free graphs.
The reason for our interest inF -free graphs is the fact (which
will be proved in Subsection III-B) that the class ofF -free
graphs is precisely the class of network graphs that satisfy
OLoP under primary interference.

We will describe the structure ofF -free graphs in terms
of the so-called ‘block decomposition’. LetG be a connected
graph. We callx ∈ V (G) a cut-node ofG, if G−x is not con-
nected. We call a maximal connected induced subgraphB of G
such thatB has no cut-node ablock ofG. Let B1, B2, . . . , Bq

be the blocks ofG. We call the collection{B1, B2, . . . , Bq}
the block decomposition ofG. It is known that the block
decomposition is unique and thatE(B1), E(B2), . . . , E(Bq)
forms a partition ofE(G) (e.g., [28]). Furthermore, the node
sets of every two blocks intersect in at most one node and this
node is a cut-node ofG.

Block decompositions give a tree-like decomposition of a
graph in the following sense. Construct theblock-cutpoint
graph ofG by keeping the cut-nodes ofG and replacing each
block Bi of G by a nodebi. Make each cut-nodev adjacent
to bi if and only if v ∈ V (Bi). It is known that the block-
cutpoint graph ofG forms a tree (e.g., [28]). With this tree-like
structure in mind, we say that a blockBi is a leaf block if it
contains at most one cut-node ofG. Clearly, if q ≥ 2, then
{Bi}

q
i=1 contains at least two leaf blocks.

It turns out that the block decomposition of anF -free graph
is relatively simple in the sense that there are only two types
of blocks. The types are defined by the following two families
of graphs. Examples of these families appear in Fig. 2.

B1: ConstructB1 as follows. LetH be a graph withV (H) =
{c1, c2, . . . , ck}, with k ∈ {5, 7}, such that

1) c1-c2- · · · -ck-c1 is a cycle;
2) if k = 5, then the other adjacencies are arbitrary; if

k = 7, then all other pairs are non-adjacent, except
possibly{c1, c4}, {c1, c5} and{c4, c7}.

Then,H ∈ B1.
Now iteratively perform the following operation. Let
H ′ ∈ B1 and let x ∈ V (H ′) with deg(x) = 2.
ConstructH ′′ from H ′ by adding a nodex′ such that
N(x′) = N(x). Then,H ′′ ∈ B1. We say that a graph is
of theB1 type if it is isomorphic to a graph inB1.

B2: Let B2 = {K2, K3, K4} ∪ {K2,t, K
+
2,t | t ≥ 2}, where

K+
2,t is constructed fromK2,t by adding an edge between

the two nodes on the side that has cardinality2. We say
that a graph isof the B2 type, if it is isomorphic to a
graph inB2.

In simple words, graphs of theB1 type are constructed by
starting with a cycle of length five or seven. Then we may add
some additional edges between nodes of the cycle, subject to
some constraints. Finally, we may iteratively take a nodex of
degree 2 and add a clonex′ of x. It will turn out thatF -free

Fig. 2. An example of anF -free graph (the dashed edges may or may not
be present). The ellipses show the blocks of the graph.

graphs have at most one block of theB1 type and that all other
blocks are of theB2 type. This means thatF -free graphs can
be constructed by starting with a block that is either of theB1

or of theB2 type, and then iteratively adding a block of the
B2 type by ‘glueing’ it on an arbitrary node.

Fig. 2 shows an example of anF -free graph. The tree-like
structure is clearly visible. The graph has one block of the
B1 type with k = 7. This block consists of a cycle of length
7 together with two clones. The other blocks are of theB2

type. Some of them are attached to the block of theB1 type
through a cut-node. Others are attached to other blocks of the
B1 type. Notice that trees and2×n complete bipartite graphs,
which were previously known to satisfy OLoP [3], [16], are,
as should be expected, subsumed by this structure.

The goal of this subsection is to prove the following formal
version of the characterization given above:

Theorem 3.3:Let G be a connected graph and let
{B1, B2, . . . , Bq} be the block decomposition ofG. ThenG
is F -free, if and only if there is at most one block that is of
theB1 type and all other blocks are of theB2 type.

The proof of the ‘if’ direction is straightforward. Here, we
will give a proof sketch of the ‘only-if’ direction in a number
of steps. For a blockB in anF -free graph, its type depends
on the size of the longest cycle inB. It will turn out that if
B contains a cycle of length5 or 7, thenB is of theB1 type.
Otherwise,B is of theB2 type. We have the following result
on blocks that have a cycle of length five or seven.

Lemma 3.1:Let G be anF -free graph and letB be a block
of G. Let F be a cycle inB that has maximum length. If
|V (F )| ≥ 5, thenB is of theB1 type.

Next, we deal with blocks that do not contain a cycle of
length 5 or 7. It follows from the definition ofF -free graphs
that such blocks do not have cycles of length at least 5.
Maffray [21] proved the following theorem:

Theorem 3.4:[Maffray [21]] Let G be a graph. Then, the
following statements are equivalent:
(1) G does not contain any odd cycle of length at least 5.
(2) For every connected subgraphG′ of G, either G′ is

isomorphic toK4, or G′ is a bipartite graph, orG′ is



isomorphic toK+
2,t for somet ≥ 1, or G′ has a cut-node.

Theorem 3.4 implies the following lemma.
Lemma 3.2:Let G be anF -free graph and letB be a block

of G. Suppose thatB contains no cycle of length at least5.
Then,B is of theB2 type.

We are now ready to prove Theorem 3.3:
Proof of Theorem 3.3:Let G be anF -free graph and

let {B1, B2, . . . , Bm} be the block decomposition ofG. For
every i ∈ {1, 2, . . . , m}, if Bi contains a cycle of length5
or 7, it follows from Lemma 3.1 thatBi is of theB1 type.
Otherwise, it follows from from Lemma 3.2 thatBi is of the
B2 type. Now suppose that there arei 6= j andp, q ∈ {5, 7}
such thatBi contains a cycleT1 of lengthp andBj contains
a cycleT2 of length q. SinceG is connected, there exists a
path P of length k ≥ 0 from a node inT1 to a node inT2.
SinceT1 andT2 are subgraphs of different blocks,T1 andT2

share at most one node. If they share a node, thenk = 0.
Now the edges ofT1, T2, P form a graph isomorphic toDp,q

k ,
a contradiction. This proves Theorem 3.3.

B. Network graphs satisfy OLoP under primary interference,
if and only if they areF -free

Now that we have described the structure of allF -free
graphs, we use this structure to prove Theorem 3.1 which
states that a network graph satisfies OLoP under primary
interference, if and only if it isF -free. It was shown in [3]
(Theorems 2 and 3) that all cycles of lengthk ≥ 6, k 6= 7 fail
SLoP.5 Therefore, such cycles do not appear as subgraphs in
graphs that satisfy OLoP. The following lemma shows that the
same is true for the graphsDp,q

k .
Lemma 3.3:Dp,q

k fails SLoP for allp, q ∈ {5, 7}, k ≥ 0.
The results from [3] together with Lemma 3.3 imply the

following result:
Corollary 3.1: Graphs that satisfy OLoP areF -free.

Proof: Let G be a graph that satisfies OLoP. By the
definition of OLoP, every subgraphH of G satisfies SLoP.
Since every graph inF fails SLoP, it follows thatG does not
contain any graph inF as a subgraph.

Corollary 3.1 settles the ‘only-if’ direction of Theorem 3.1.
To prove the ‘if’ direction, we will start with a useful lemma.
We will give the idea of the proof, the full proof being in
Appendix B.

Lemma 3.4:Let G be a graph andx, x′ ∈ V (G) such that
deg(x) = 2 andx′ is a clone ofx. Then,G satisfies SLoP.

Proof idea: Let {z1, z2} = N(x). Defineα ∈ [0, 1]
|E|

by letting α(e) = 1/2, if e is incident with z1 or z2, and
e 6= z1z2, α(z1z2) = 1, if z1z2 ∈ E(G), andα(e) = 0 for all
other edgese. Now every maximal matching uses either two
edgese1, e2 with α(e1) = α(e2) = 1/2, or edgez1z2.

The following lemma is the crucial step in settling the ‘only-
if’ direction of Theorem 3.1. Again, we give the proof idea.

Lemma 3.5:Every connectedF -free satisfies SLoP.

5Although the case considered in [3] pertains to interference graphs,
the network case is identical since the interference graph (under primary
interference) of a cycle is a cycle of the same length.

Proof idea: Let G be a connectedF -free graph and let
{B1, B2, . . . , Bq} be the block decomposition ofG. It follows
from Theorem 3.3 that there is at most one blockBi that is of
the B1 type and all other blocks are of theB2 type. We will
construct a good edge weightingα for G.

Suppose first thatG has a leaf blockBi of theB2 type. If
q = 2, then letx be the cut-node ofG in V (Bi). If q = 1, let
x ∈ V (Bi) be arbitrary. There are four cases:

(1) Bi is isomorphic toK2: let x, v denote the nodes ofBi.
Let α(e) = 1 for all edges incident withx andα(e) = 0 for
every other edgee.

(2) Bi is isomorphic toK3: let α(e) = 1 for all e ∈ E(Bi)
andα(e) = 0 for every other edgee.

(3) Bi is isomorphic toK4: let x, v1, v2, v3 denote the nodes
of Bi and letα(v1v2) = α(v1v3) = α(v2v3) = 1 andα(e) =
0 for all e ∈ (E(G) \ {v1v2, v1v3, v2v3}).

(4) Bi is isomorphic toK2,t or K+
2,t for somet ≥ 2: let

V (Bi) = V1∪V2 such that|V1| = 2 andV2 is an independent
set. LetV1 = {y1, y2} and letV2 = {z1, z2, ..., zt}. If Bi is
isomorphic toK+

2,2 and x ∈ V2, then assume thatx = z1

and setα(y1z2) = α(y2z2) = α(y1y2) = 1. Otherwise,Bi

contains nodesp, p′ such thatdeg(p) = deg(p′) = 2 andp′ is
a clone ofp, and hence, the result follows from Lemma 3.4.

Thus, we may assume thatG does not have a leaf block of
theB2 type. Since ifq ≥ 2, G has at least two leaf blocks, and
hence, at least one leaf block of theB2 type, we may assume
that q = 1 andG = B1 is of theB1 type. LetH, k be as in
the definition ofB1. It follows from the definition ofH that
|V (H)| = k. First, suppose thatV (G) \ V (H) 6= ∅. Then, it
follows from the definition ofB1 that there exist two nodes
x, x′ such thatdeg(x) = deg(x′) = 2 andx′ is a clone ofx.
It follows from Lemma 3.4 thatG satisfies SLoP. So we may
assume thatV (G) = V (H). If k = 5, then every maximal
matching has size two, and hence, we may setα(e) = 1/2
for all e ∈ E(G). If k = 7, then every maximal matching
has size three, and hence, we may setα(e) = 1/3 for all
e ∈ E(G).

We are now in a position to prove Theorem 3.1:
Proof of Theorem 3.1:Corollary 3.1 is the ‘only-if’ part

of the theorem. For the ‘if’ part, since every subgraph ofG
is F -free, it follows from Lemma 3.5 that every subgraph of
G satisfies SLoP. Therefore,G satisfies OLoP.

C. Recognizing network graphs that satisfy OLoP under pri-
mary interference

Having described the structure of graphs that satisfy OLoP,
we provide an efficient algorithm for testing whether a given
network graph satisfies OLoP under primary interference. A
useful observation is the following (see Appendix B for the
proof).

Lemma 3.6:|E(G)| ≤ 2|V (G)| for everyF -free graphG.
This puts us in a position to prove Theorem 3.2.

Proof idea of Theorem 3.2: We may assume thatG
is connected. By Theorems 3.1 and 3.3, it suffices to check
whetherG has the structure described in Theorem 3.3. We
propose the following algorithm. Letn = |V (G)| and m =



Fig. 3. The Desargues graphD for which σ(D) = 0.6 and which is a
subgraph ofK10,10 , showing thatσ∗(K10,10) ≤ 0.6.

|E(G)|. First, check thatm ≤ 2n, because otherwiseG is not
F -free by Lemma 3.6 and we can stop. Now, construct the
block decomposition{B1, B2, ..., Bq} of G. Sincem ≤ 2n,
this can be done inO(n+m) = O(n) time (see e.g., [11]). For
each blockBi, test inO(|V (Bi)|) time whetherBi is of theB2

type. If G has more than one block that is not of theB2 type,
then G is not F -free and we stop. If we encounter no such
block, thenG is F -free and we stop. Next, check whetherB∗

is of theB1 type using multiple applications of Bodlaender’s
algorithm [2] which, for fixedk, finds a cycle of length at least
k in a given graphH , if it exists, in O(k!2k|V (H)|) time.
Checking this can be done inO(|V (B)|) time. Therefore, the
overall complexity of the algorithm isO(n).

IV. t × n SWITCHES WITHt ≤ 7 SATISFY σ∗ ≥ 2/3

In the previous section, we characterized the full set of
graphs that satisfy OLoP. It is only natural to ask the question:
what happens to graphs that do not satisfy OLoP? In this
section, we will show that every bipartite graphG that has
one side with at most 7 nodes satisfiesσ∗(G) ≥ 2/3, which
implies that σ∗(Kt,n) = 2/3 for 3 ≤ t ≤ 7, n ≥ 3.
We also note that this bound is close to being tight by
presenting a bipartite graph with 10 nodes on one side for
which σ∗(G) < 2/3. Consider the so-called Desargues graph
D in Fig. 3. D is edge-transitive and hence it follows from
Lemma 2.2 and the fact thatν(D) = 10 and µ(D) = 6 that
σ(D) = 3/5. SinceD is a subgraph ofK10,10, this implies
thatσ∗(Kt,n) ≤ 3/5 for all t ≥ 10, n ≥ 10. The proofs of the
results can be found in Appendix C.

We now concentrate on subgraphs ofKt,n with t ≤ 7, n ≥
1. We will start with some easy observations that help give a
lower bound onσ(G).

Lemma 4.1:Let G be a graph.

(a) If there existsv ∈ V (G) such that every maximal
matching inG coversv, thenσ(G) = 1.

(b) If deg(v) = 1 for somev ∈ V (G), thenσ(G) = 1.
(c) If deg(v) = 2 for somev ∈ V (G), thenσ(G) ≥ 2/3.

Proof: Part (a): letα(e) = 1 for all edges incident with
v and α(e) = 0 for all other edges. Clearly, every maximal
matchingZ satisfies

∑

e∈Z α(e) = 1. This proves (a). Part
(b) follows immediately because ifdeg(v) = 1, then every
maximal matching covers the unique neighboru of v. Part
(c): let a, b be the neighbors ofv. Let α(av) = α(bv) = 2/3,
α(ab) = 1 if ab ∈ E(G), α(e) = 1/3 for all edgese 6∈
{ab, bv, av} that are incident witha or b, andα(e) = 0 for
all other edges. It is not hard to see that

∑

e∈Z α(e) ≥ 2/3

for every maximal matchingZ in G. This proves (c), thus
proving Lemma 4.1.

By using the conditions given in Lemmas 4.1 and 2.1, we
prove the following lemma in Appendix C:

Lemma 4.2:Let G be a bipartite graph withµ(G) ≤ 4.
Thenσ(G) ≥ 2/3.

Lemma 4.2 has the following corollaries:
Corollary 4.1: Every bipartite graphG with ν(G) ≤ 7

satisfiesσ∗(G) ≥ 2/3.
Proof: Let H be a subgraph ofG (perhapsH = G).

Clearly, ν(H) ≤ ν(G) ≤ 7. If µ(H) ≤ 4, then it follows
from Lemma 4.2 thatσ(H) ≥ 2/3. Otherwise,µ(H) ≥ 5 and
hence it follows from Lemma 2.1 thatσ(H) ≥ 5/7 > 2/3.
Therefore,σ(H) ≥ 2/3 for all subgraphsH of G. It follows
that σ∗(G) ≥ 2/3.

It is already known thatσ∗(Kt,n) = 1 for t ∈ {1, 2}. For
3 ≤ t ≤ 7, we obtain:

Corollary 4.2: σ∗(Kt,n) = 2/3 for all 3 ≤ t ≤ 7, n ≥ 3.
Proof: Let 3 ≤ t ≤ 7, n ≥ 3. It follows from Corollary

4.1 that σ∗(Kt,n) ≥ 2/3. Since Kt,n contains C6 as a
subgraph andσ(C6) = 2/3, it follows that σ∗(Kt,n) = 2/3.

V. I NTERFERENCE GRAPHS AND THEIRσ∗–VALUES

Our focus so far has been on network graphs and primary
interference constraints. We now consider general interference
graphs that represent various transmission constraints. Recall
that under general interference constraints, a schedulingalgo-
rithm has to select an independent set from the interference
graph at each slot. We are interested in the performance of
a low-complexity GMS algorithm which greedily picks the
nodes with the largest weight (this algorithm is also referred
to as the Maximal Weighted Independent Set algorithm). The
results are summarized in Fig. 4 which illustrates throughput
guarantees of several graph families.

A. OLoP-satisfying Interference Graphs

We first show that the OLoP condition holds in a large
subclass of perfect graphs which we will call co-strongly
perfect graphs:

Definition 5.1 (Co-strongly perfect graph):A graph G is
co-strongly perfect if for every induced subgraphH of G there
existsα = α(H) ∈ {0, 1}|V (H)| such thatαT

M(H) = e
T .

Equivalently, a graphG is co-strongly perfect, if and only ifG
contains a clique that intersects every maximal independent set
in G. It follows from the definition, and from the interference
graph counterparts of Definitions 2.2 and 2.3 thatevery graph
that is co-strongly perfect satisfies OLoP.

Note from the above weighting that co-strongly perfect
graphs satisfy OLoP with an integer vectorα. An open
question is whether all perfect graphs that satisfy OLoP do so
with integer weightsα. This is not true for imperfect graphs,
becauseC5 is an imperfect graph that satisfies OLoP with the
unique optimal node weightingα(v) = 1/2 for all v ∈ V (C5).
The vertical division of Fig. 4 into perfect and non-perfect
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Möbius-Kantor graph,F2 - graph obtained by a single cycle substitution,Fk

- sequence of graphs obtained by recursive cycle substitutions.

graphs, denotedP andP , respectively, allows us to represent
this open problem by the question mark in the perfect division.

TheCo-Strongly Perfect class includes a large num-
ber of perfect graph families (some of them identified individ-
ually in [30]). To provide some context about the magnitude
of the result, consider the set of simple graphs with 10 nodes.
There are 3,063,185 such co-strongly perfect graphs. This can
be compared to the 126,768 chordal graphs with 10 nodes (the
chordal graphs family is one of the largest previously known
families satisfying OLoP) and to the 106 trees [26].

We proved in Section III-A thatF -free network graphs are
OLoP-satisfying under primary interference. This is shown
in Fig. 4 by the classL(F-free) (line graphs ofF -free
graphs), which is a subclass of theLine Graphs family.
Since L(F -free) graphs represent all OLoP-satisfying line
graphs, this family covers the entire section ofLine Graphs
that is in theσ∗ = 1 division. The chordal bipartite family, de-
notedCBip on Fig. 4, is another family that is entirely OLoP-
satisfying and forms the subclass ofBipartite graphs that
are co-strongly perfect and OLoP-satisfying [30].

B. σ∗–values for Line Graphs

We examine theσ∗ values of interference graphs that are
Line Graphs and that fail OLoP. As mentioned in Section
II and in [20],σ∗ ≥ 1/2 for all Line Graphs. In Fig. 4, the
bottom part of this family is shaded to indicate that we still
do not have any specific example of a line graph for which
σ∗ = 1/2. The line graph with the lowest knownσ∗ value
(σ∗ = 0.6) is the line graph of the Petersen graph (Fig. 1-(c))
[15], denotedL(Pet).

We consider families that are subclasses of line graphs.
The results on bipartite network graphs from Section IV (line
graphs of subgraphs ofKt,n with t ≤ 7 have σ∗ ≥ 2/3)
are shown on the figure as theL(Bip) ≤ 7 class which is
located in the top and the second divisions.

(a) (b)

Fig. 5. Graphs that have lowσ∗ values: (a) Möbius-Kantor graph (b)F2, a
graph where each node of aC6 is substituted by aC6.

We now obtain theσ∗ values of the entire family of
cycles, some of which have been considered individually in
the literature. For the 6-cycle it has been shown thatσ∗ = 2/3
[8], [15] (represented by the pointC6 on Fig. 4). It has also
been shown thatC5 andC7 satisfy OLoP, while larger cycles
(n ≥ 8) do not [30]. Using Lemma 2.3, the following lemma
provides theσ∗ of all cycles.

Lemma 5.1:For n ≥ 3, σ∗(Cn) = ⌈n/3⌉/⌊n/2⌋.
Proof: Let n ≥ 3. Since every proper induced subgraph

H of Cn (i.e. H 6= Cn) is a forest, we haveσ(H) = 1
for every suchH . Now considerCn itself. A maximum
independent set inCn can be constructed by choosing nodes
alternatingly on the cycle. This implies thatν(G) = ⌊n/2⌋.
A smallest maximal independent set can be constructed by
choosing nodes skipping two nodes at a time. This implies
that µ(G) = ⌈n/3⌉. SinceCn is vertex-transitive, it follows
from Lemma 2.3 thatσ(G) = ⌈n/3⌉/⌊n/2⌋. From this and
the above, the result follows from the definition ofσ∗(G).

To the best of our knowledge, this is the first time an entire
family’s σ–value has been characterized this precisely. This
result is shown in Fig. 4 as the classesECyc ≥ 6 andOCyc
≥ 9, for large even and odd cycles, respectively. No odd cycle
can haveσ∗ = 2/3, which is why theOCyc family is strictly
within the second division. The family of even cycles is exactly
the intersection of theBipartite and theLine Graphs
families that do not satisfy OLoP. In other words, there are
no bipartite line graphs that haveσ∗ < 1 and that are not
large even cycles. Since⌈n/3⌉/⌊n/2⌋ ≥ 2/3 for all n ≥ 3,
Lemma 5.1 provides a lower-bound of2/3 for arbitrary cycles,
resulting in the following corollary:

Corollary 5.1: For all cycles,σ∗(Cn) ≥ 2/3.

C. Low σ∗–values

We now focus on graphs with very lowσ∗. The current
knowledge ofσ∗–values is limited to a handful graphs in
which GMS achieves a large portion of the stability region.
The lowestσ∗–value of a specific graph isσ∗ = 0.6 for the
line graph of the Petersen graph [15]. In [16], it was shown
that for geometric graphs1/6 ≤ σ∗ ≤ 1/3. Below, we present
a graph that hasσ∗ = 0.5 and provide a method through which
it is possible to create networks with arbitrarily lowσ∗.

Consider the graph shown in Fig. 5-(a). It is a generalized
Petersen graph with factorsGP (8, 3), also known as the
Möbius-Kantor graphMK. Because of its vertex-transitivity,
it follows from Lemma 2.3 and from the fact thatν̄(MK) = 8
and µ̄(MK) = 4 that σ∗(MK) = 1/2. Hence, GMS can



only guarantee 50% throughput.6 Being a bipartite graph, the
Möbius-Kantor implies thatBipartite graphs can haveσ∗

values as low as 0.5, as illustrated in Fig. 4. Whether bipartite
graphs can haveσ∗ < 0.5 is still an open question, shown by
the shaded region in Fig. 4.

Now consider the following family. LetF1 be a 6-cycle and,
for k ≥ 2, constructFk from Fk−1 by substituting a 6-cycle
for each nodev ∈ V (Fk). By substitutingC6 for a nodex of
the original graph, we mean that we replacex by a6-cycleH
and we make everyv ∈ V (H) adjacent to every neighbor ofx.
For example,F2 is shown in Fig. 5-(b), (where the hexagons
represent 6-cycles). Using Lemma 2.3 and the fact that theFk

are vertex-transitive, we prove the following in Appendix D:
Observation 5.1:σ∗(Fk) ≤ (2/3)k for all k ≥ 1.

Since we may choosek arbitrarily large, it follows that there
exist graphs with arbitrarily smallσ∗. A graph generated by
this method appears in Fig. 4 asF2 and the sequence of graphs
obtained through recursive substitution with decreasingσ∗–
values is shown asFk.

Finally, it can be shown that the family of weakly chordal
graphs that was left unresolved in [30] is not entirely OLoP-
satisfying. An example of a weakly chordal graph that is not
co-strongly perfect and that hasσ∗ < 1 appears in Fig. 42 in
[13] and is denoted in Fig. 4 asFig42.

D. Simulation Results

When GMS guarantees only low throughput efficiencyγ∗,
there may exist a specific arrival rate outside ofγ∗Λ∗ for
which GMS is not stable. In real-life arrival processes, it is
sometimes unlikely that such an arrival process would occur.
Hence, GMS may behave better than predicted. We used
Matlab simulations in order to evaluate the performance of
GMS in graphs with lowσ∗ identified in Section V-B.

We consider i.i.d. uniform arrivals to every node at each
time slot for a range of normalized loads within the stability
region. We tested the GMS and the stable algorithm that solves
the Maximum Weight Independent Set problem7. For each
arrival rate, the simulation was run for 10,000 iterations.For
each graph and arrival rate value, the average queue lengths
appear in Fig. 6. The cycleC12 hasσ∗ = 2/3. In the figure, we
see that in a cycle, the queues under GMS become unstable at
around load level of 0.85. Although the Möbius-Kantor graph
has aσ∗ = 1/2, GMS performs similarly.

VI. CONCLUSION

The Local Pooling (LoP) conditions provide a new tool
for better understanding the performance of Greedy Maximal
Scheduling (GMS) algorithms. In this paper, we identified
all the network graphs in which these conditions hold under
primary interference constraints (in these graphs Greedy Max-
imal Scheduling achieves100% throughput). In addition, we

6Note that since this graph contains a claw (i.e., a complete bipartite graph
K1,3), it cannot be the interference graph of any network under primary
interference constraints.

7Although the problem is NP-complete, we obtained numericalsolutions
in small graphs.
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showed that in all bipartite graphs of size up to7 × n, GMS
is guaranteed to achieve66% throughput. Finally, we studied
the performance of GMS in interference graphs and showed
that σ∗ can be arbitrarily low.

We emphasize that our objective in this paper is to obtain
a better theoretical understanding of LoP that will assist
the development of future algorithms. As such, the paper
demonstrates that using graph theoretical methods can signif-
icantly contribute to our understanding of greedy scheduling
algorithms. From a graph theoretical point of view, LoP raises
many interesting open problems. For example, three of the
authors [5], [6] are currently working on extending some of the
results to claw-free graphs, which are a generalization of the
interference graphs of networks under primary interference.
From the networking point of view, there remain many open
problems. For example, generalizing the interference model to
a model based on SINR and deriving the corresponding LoP
conditions remain major subjects for future research.
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APPENDIX A
FULL PROOFS OF THE RESULTS INSECTION II

Lemma 2.1: Let G be a graph. Then,σ(G) ≥ µ(G)/ν(G)
(in the network graph sense).

Proof: Let α : E(G) → [0, 1] be defined byα(e) =
1/ν(G) for all e ∈ E(G). This is clearly a good edge weight-
ing for G. Since every maximal matching inG has size at least
ν(G), it follows thatµ(G)/ν(G) ≤

∑

e∈Z α(e) ≤ 1 for every
maximal matchingZ in G. Therefore,σ(G) ≥ µ(G)/ν(G).
This proves Lemma 2.1.

Let G be a graph. The following lemma provides a useful
method for constructing optimal solutions to the following
Linear Program, which is the interference graph analogue of
(2):

σ(G) = max σ (4)

subject toσe
T ≤ αT

I(G) ≤ e
T ,

whereα ∈ [0, 1]|V (G)| and I(G) is the maximal independent
set/vertex incidence matrix corresponding toG. For an integer
t ≥ 0 and an automorphismφ of G, we denote byφt the tth
composition ofφ with itself (whereφ0 denotes the identity
function).

Lemma A.1:Let G be a vertex-transitive graph. If (4) has
a solution(σ, α), then (4) has a solution(σ, α′) such that
α′(v) = c for all v ∈ V (G).

Proof: Let (σ, α) be a solution of (4) such that

f(α) :=
∑

u,v

∣

∣α(u) − α(v)
∣

∣

is minimum. If f(α) = 0, then the lemma holds. So suppose
for a contradiction thatf(α) > 0. Then letx, y ∈ V (G) such
that |α(x) − α(y)| is maximum. SinceG is vertex-transitive,
there exists an automorphismφ of G such thatφ(x) = y. Let
T ≥ 1 be smallest such thatφT = φ and define

β =
1

T

T−1
∑

t=0

α ◦ φt.

In this expression, becauseφ is an automorphism, every term
in the summation corresponds to a solution(σ, α ◦φt) of (4).
Sinceβ is the convex combination of solutions of (4),β is
also a solution of (4). It follows from the triangle inequality
that, foru, v ∈ V (G),

∣

∣β(u) − β(v)
∣

∣ ≤
1

T

T−1
∑

t=0

∣

∣α(φt(u)) − α(φt(v))
∣

∣.

By the construction ofβ, we haveβ(x) = β(y). Notice also
thatf(α) = f(α◦φt) for all t. Now, since|α(x)−α(y)| > 0,



we obtain

f(β) =
∑

u,v

∣

∣β(u) − β(v)
∣

∣

=
∑

u,v
{u,v}6={x,y}

∣

∣β(u) − β(v)
∣

∣

≤
∑

u,v
{u,v}6={x,y}

[

1

T

T−1
∑

t=0

∣

∣α(φt(u)) − α(φt(v))
∣

∣

]

≤
1

T

[(

∑

u,v

∣

∣α(u) − α(v)
∣

∣

)

−
∣

∣α(x) − α(y)
∣

∣

]

+
1

T

T−1
∑

t=1

f(α ◦ φt)

<
1

T

∑

u,v

∣

∣α(u) − α(v)
∣

∣+
1

T

T−1
∑

t=1

f(α)

=
∑

u,v

∣

∣α(u) − α(v)
∣

∣ = f(α),

which contradicts the assumption thatα was chosen withf(α)
minimum. This proves Lemma A.1.

Lemma 2.3: If G is vertex-transitive, thenσ(G) =
µ̄(G)/ν̄(G) (in the interference graph sense).

Proof: It follows from Lemma A.1 that there exists an
optimal solution(σ, α) for the Linear Program (4) such that
α(v) = c for all v ∈ V (G) for somec. Therefore, (4) may be
reduced to the following Linear Program in two variables:

σ(G) = max σ (5)

subject toσe
T ≤ cM(G) ≤ e

T .

In this Linear Program, it is clearly optimal to choosec as
large as possible and chooseσ as large as possible subject to
the choice ofc. Clearly, the largest possible value ofc is 1

ν̄(G) .

The corresponding largest possible value ofσ is µ̄(G)
ν̄(G) . This

proves Lemma 2.3.

The following lemma is an easy corollary of Lemma 2.3:
Lemma 2.2: If G is edge-transitive, thenσ(G) =

µ(G)/ν(G) (in the network graph sense).
Proof: Notice that it follows, from the fact thatG is edge-

transitive, that the line graphL(G) of G is vertex-transitive.
Moreover, since matchings inG correspond to independent
sets inL(G), it follows that µ(G) = µ(L(G)) and ν(G) =
ν(L(G)). Hence, it follows from Lemma 2.3 thatσ(G) =
µ(L(G))/ν(L(G)) = µ(G)/ν(G).

APPENDIX B
FULL PROOFS OF THE RESULTS INSECTION III

Lemma 3.1: Let G be anF -free graph and letB be a
block of G. Let F be a cycle inB that has maximum length.
If |V (F )| ≥ 5, thenB is of theB1 type.

Proof: We prove this by induction on|V (B)|. It follows
from the definition ofF thatk ∈ {5, 7}. Let f1, f2, . . . , fk be
the nodes ofF . We will start with a number of subclaims:

(i) Every node inV (B) \ V (F ) is a clone forF .

Let x ∈ (V (B) \ V (F )). Since |V (B)| ≥ |V (F )| ≥ 5 and
|V (B)| has no cut-node, it follows thatB is 2-connected
and hence there exist two edge-disjoint pathsP1 and P2

from x to two distinct nodes ofF , say fi and fj , respec-
tively. From the symmetry, we may assume thati = 1 and
j > k/2. First assume that|E(P1)| + |E(P2)| ≥ 3. Now
f1-P1-x-P2-fj-fj−1- · · · -f2-f1 is a cycle of length|E(P1)|+
|E(P2)| + j > 3 + k/2, contradicting the maximality ofF .

It follows that |E(P1)| + |E(P2)| = 2 and, therefore,
|E(P1)| = |E(P2)| = 1. Thus,x has two neighbors inV (F ).
If x has two consecutive neighbors inV (F ), sayf1, f2, then
f1-x-f2-f3- · · · -fk−1-fk-f1 is a cycle of lengthk +1, contary
to the maximality ofF . If k = 5, then, sincex has at least
two neighbors inV (F ), it follows that x is a clone forF .
So we may assume thatk = 7. Suppose thatx is adjacent to
fp andfp+3 for somep ∈ {1, 2, . . . , 7}. From the symmetry,
we may assume thatp = 1. But now f1-x-f4-f5-f6-f7-f1 is
a cycle of length six, a contradiction. From the symmetry, it
follows thatx has exactly two neighbors inF and they arefq

andfq+2 for someq ∈ {1, 2, . . . , 7}. Hence,x is a clone for
F . This proves(i).

(ii) V (B) \ V (F ) is an independent set.

Suppose thatx, y ∈ V (B) \ V (F ) are adjacent nodes. We
may assume thatx is a clone off2. First suppose thaty
is also a clone off2. Then x-f3-f4- · · · fk−1-fk-f1-y-x is
a cycle of lengthk + 1, contary to maximality ofF . Next,
suppose thaty is a clone of a node at distance 2 off2, say
fk. Then x-f1-f2- · · · -fk−1-y-x is a cycle of lengthk + 1,
contary to maximality ofF . Finally, suppose thatk = 7
and y is a clone of a node at distance 3 off2, say f5. It
follows thatx-f1-f2-f3-f4-f5-f6-y-x is a cycle of length eight,
a contradiction. This proves(ii) .

Now suppose there existsx ∈ (V (B) \ V (F )) 6= ∅. It
follows from the above thatx is a clone forF . From the
symmetry, we may assume thatx is a clone off2. We claim
that deg(f2) = 2. For suppose not. Thenf2 has a neighbor
y 6∈ {f1, f2, f3}. First suppose thaty ∈ (V (B) \ V (F )). It
follows from (i) that y is a clone off1 or of f3. From the
symmetry, we may assume thaty is a clone off3. But now
y-f2-f3-x-f1-f2-y is a cycle of length six, a contradiction.
Therefore, it follows thaty = fj for somej ∈ {4, 5, . . . , k}.
First assume thatj = 5. Thenx-f1-f2-f5-f4-f3-x is a cycle
of length six, a contradiction. From the symmetry, this leaves
only the case wherek = 7 and j ∈ {4, 6}. We may assume
that j = 4. But nowf2-f4-f5-f6-f7-f1-f2 is a cycle of length
six, a contradiction. This proves thatdeg(f2) = 2. It follows
from the induction hypothesis thatB − f2 is of theB1 type.
Therefore, by the definition ofB1, it follows thatB is of the
B1 type.



So we may assume thatV (B) \ V (F ) = ∅. If k = 5,
then we are done. So we may assume thatk = 7. If F is an
induced cycle inB, then we are also done. So we may assume
that there is at least one edge between somefi and fj with
|i − j| ≥ 2.

(iii) There is noi ∈ {1, 2, . . . , 7} such that either (a)fi

is adjacent tofi+2, or (b) fi is adjacent tofi+3 and fi+1 is
adjacent tofi+5.

From the symmetry, we may assume thati = 1. If fi is
adjacent tofi+2, it follows thatf1-f3-f4-f5-f6-f7-f1 is a cycle
of length six, a contradiction. For part (b), iffi is adjacent
to fi+3 and fi+1 is adjacent tofi+5, then it follows that
f1-f4-f3-f2-f6-f7-f1 is a cycle of length six, a contradiction.
This proves(iii) .

It follows from the above and from(iii) that there exists
i ∈ {1, 2, . . . , 7} such thatfi is adjacent tofi+3. From the
symmetry, we may assume thati = 1. It follows from (iii)
that f2 is non-adjacent tof5 and f6, andf3 is non-adjacent
to f6 and f7. Hence, the only possible other edges aref1f5

andf4f7. Therefore,B is of theB1 type. This proves Lemma
3.1.

Lemma 3.2:Let G be anF -free graph and letB be a block
of G. Suppose thatB contains no cycle of length at least5.
ThenB is of theB2 type.

Proof: SinceB has no cycle of length at least5 andB
has no cut-node, it follows from Theorem 3.4 that eitherB is
a bipartite graph, orB is isomorphic toK4, or B isomorphic
to K+

2,t. In the latter two cases, we are done. So suppose that
B is a bipartite graph. LetV (G) = X ∪ Y such thatX and
Y are independent sets. If|X | ≤ 1, thenx ∈ X is a cut-node,
a contradiction. From the symmetry, it follows that|X | ≥ 2
and |Y | ≥ 2. Now supposex ∈ X is non-adjacent toy ∈ Y .
Since B is 2-connected, it follows that there are two edge-
disjoint pathsP1 and P2 from x to y. Since x and y are
non-adjacent andB is bipartite, it follows that|E(P1)| ≥ 3
and |E(P2)| ≥ 3. But now x-P1-y-P2-x is a cycle of length
at least six, a contradiction. It follows thatX is complete
to Y . If |X | ≥ 3 and |Y | ≥ 3, then clearly,B contains a
cycle of length six, a contradiction. Therefore, at least one of
X, Y has size exactly2. Hence,B is isomorphic toK2,t with
t = max{|X |, |Y |} and thereforeB is of theB2 type. This
proves Lemma 3.2.

Lemma B.1:Let m ∈ {5, 7} and let q ≥ 0. Let G′ be a
graph and letF be am-cycle disjoint fromG′. Let v ∈ V (G′)
such that there exists a matching inG′ that covers all neighbors
of v in G′, but notv itself. LetG be the graph constructed from
the disjoint union ofG′ andF by adding a pathP of length
q betweenf ∈ V (F ) andv. Then every good edge weighting
α for G satisfiesα(e) = 0 for everye ∈ E(F ) ∪ E(P ).

Proof: Let f1, f2, . . . , fm be the nodes ofF in order
and let p1, p2, . . . , pq be the nodes ofP . We may assume
that f = fm, p1 = f and pq = v. We use induction on
q. First suppose thatq = 0, i.e. v = fm. We will prove

this for the case whenm = 5. The case whenm = 7 is
analogous. LetM be a maximal matching inG′ that covers
v. Let M1 = M ∪ {f1f2, f3f4} and letM2 = M ∪ {f2f3}.
Sinceα is a good edge weighting andM1 andM2 are maximal
matchings, it follows thatα(f2f3) = α(f1f2)+α(f3f4). Now
let M ′ be a maximal matching inG′ that does not coverv. Let
M ′

1 = M ′∪{f1v, f2f3} andM ′
2 = M ′∪{f1v, f3f4}. Sinceα

is a good edge weighting andM ′
1 andM ′

2 are maximal match-
ings, it follows thatα(f2f3) + α(f1v) = α(f3f4) + α(f1v).
Hence,α(f2f3) = α(f3f4). Using the symmetry, it follows
that α(f2f3) = α(f1f2). Combining this with the equality
found above, it follows thatα(f2f3) = 2α(f2f3) and hence
that α(f1f2) = α(f2f3) = α(f3f4) = 0. Finally, let
M ′′ be a maximal matching inG′ that covers all neighbors
of v but not v itself. Let M ′′

1 = M ′′ ∪ {f1v, f2f3} and
M ′′

2 = M ′′ ∪{f1f2, f3f4}. Sinceα is a good edge weighting
and M ′′

1 and M ′′
2 are maximal matchings, it follows that

α(f1v) + α(f2f3) = α(f1f2) + α(f3f4) = 0. Hence,
α(f1v) = 0 and, from the symmetry,α(f4v) = 0. This proves
the claim forq = 0.

Next, suppose thatq ≥ 1. It follows from the induction
hypothesis thatα(e) = 0 for all e ∈ (E(F ) ∪ E(P )) \
{pq−1pq}. Let M be a matching inG′ that covers all neighbors
of v but not v itself. Let M1 be a maximal matching in
G|(V (F ) ∪ V (P )) that coversv and let M2 be a maximal
matching inG \ (V (F )∪ V (P )) that does not coverv. Since
M ∪ M1 and M ∪ M2 are maximal matchings, it follows
that α(M1) = α(M2). Since α(M2) = 0, it follows that
α(pq−1pq) = 0. This proves Lemma B.1.

Lemma 3.3: Dp,q
k fails SLoP for allp, q ∈ {5, 7}, k ≥ 0.

Proof: Let k ≥ 0, p, q ∈ {5, 7} and suppose thatDp,q
k

satisfies SLoP. Then there exists a good edge weightingα

for Dp,q
k . It follows from Lemma B.1 applied toDp,q

k that
α(e) = 0 for all e ∈ E(Dp,q

k ). This is clearly not a good edge
weighting forDp,q

k , a contradiction. This proves Lemma 3.3.

Lemma 3.4: Let G be a graph and letx, x′ ∈ V (G) be
such thatdeg(x) = deg(x′) = 2 andx′ is a clone ofx. Then
G satisfies SLoP.

Proof: Let x andx′ be as in the claim and let{z1, z2} =

N(x). Defineα ∈ [0, 1]
|E| by

α(e) =











1/2 if e is incident withz1 or z2, ande 6= z1z2

1 if e = z1z2

0 otherwise.

To see thatα is a good edge weighting forG, let M be a
maximal matching inG′. If z1z2 ∈ M , then no other edge
in M is incident withz1 or z2 and hence

∑

e∈M α(e) = 1.
Therefore we may assume thatz1z2 6∈ M . It suffices to show
thatM covers bothz1 andz2. So let us assume to the contrary
thatM does not coverz1. SinceM is a matching, at most one
of xz2, x

′z2 is in M . From the symmetry, we may assume
thatxz2 6∈ M . But now we may addxz1 to the matching and



obtain a larger matching, contary to the maximality ofM .
This proves Lemma 3.4.

Lemma 3.5:Every connectedF -free graph satisfies SLoP.
Proof: The proof is by induction on|E(G)|. Let

{B1, B2, . . . , Bq} be the block decomposition ofG. It follows
from Theorem 3.3 thatBi is either of theB1 type or of the
B2 type, and for at most one value ofi, Bi is of theB1 type.
Since, inductively, every proper subgraph ofG satisfies SLoP,
it suffices to find a good edge weightingα for G.

Suppose first thatG has a leaf blockBi of theB2 type. If
q = 2, then letx be the cut-node ofG in V (Bi). If q = 1, let
x ∈ V (Bi) be arbitrary. There are four cases:
(1) Bi is isomorphic toK2: let x, v denote the nodes of

Bi. Let α(e) = 1 for all edges incident withx and
α(e) = 0 for every other edgee. Let M be a maximal
matching inG. If xv ∈ M , then, sinceM is a matching,
M does not contain any other edgee with α(e) = 1
and, hence,

∑

e∈M α(e) = 1. If xv 6∈ M , then, sinceM
is maximal,M contains an edge incident withx and,
hence,

∑

e∈M α(e) = 1. Since this is true for every
maximal matchingM of G, it follows that α is a good
edge weighting forG.

(2) Bi is isomorphic toK3: let x, v1, v2 denote the nodes of
Bi and letα(e) = 1 for all e ∈ E(Bi) andα(e) = 0 for
every other edgee. Let M be a maximal matching inG.
If v1v2 ∈ M , then, sinceM is a matching,M does not
contain either ofxv1, xv2 and, hence,

∑

e∈M α(e) = 1.
If v1v2 6∈ M , then, sinceM is maximal andM is a
matching, exactly one ofxv1, xv2 is in M and, hence,
∑

e∈M α(e) = 1. Since this is true for every maximal
matching M of G, it follows that α is a good edge
weighting forG.

(3) Bi is isomorphic toK4: let x, v1, v2, v3 denote the nodes
of Bi and let α(v1v2) = α(v1v3) = α(v2v3) = 1
and α(e) = 0 for all e ∈ (E(G) \ {v1v2, v1v3, v2v3}).
To see that this is a good edge weighting, letM be
a maximal matching inG. Suppose thatM does not
contain any of the edgesv1v2, v1v3, v2v3. SinceM does
not contain v1v3 and M is maximal, it follows that
M contains eitherxv1 or xv3. Assume without loss of
generality thatxv1 ∈ M . Now we may addv2v3 to M to
obtain a larger matching, a contradiction. It follows that
∑

e∈M α(e) = 1. Since this is true for every maximal
matching M of G, it follows that α is a good edge
weighting forG.

(4) Bi is isomorphic toK2,t or K+
2,t for some t ≥ 2: let

V (Bi) = V1∪V2 such that|V1| = 2 andV2 is an indepen-
dent set. LetV1 = {y1, y2} and letV2 = {z1, z2, ..., zt}.
First suppose thatBi is isomorphic toK+

2,2 andx ∈ V2.
We may assume thatx = z1. Setα(y1z2) = α(y2z2) =
α(y1y2) = 1 and α(e) = 0 for all other edgese.
Let M be a maximal matching inG. Suppose thatM
does not use any of the edgesy1z2, y2z2, y1y2. Since
M is a matching, at least one of the edgesxy1, xy2

is not in M , say xy1. But now we may addy1z2

to M to obtain a larger matching, a contradiction. It
follows that

∑

e∈M α(e) = 1. Since this is true for every
maximal matchingM of G, it follows that α is a good
edge weighting forG. This solves the case whenBi is
isomorphic toK+

2,2 andx ∈ V2. So we may assume this
is not the case.
We claim thatBi contains two nodesp, p′ of degree 2
such thatp′ is a clone ofp. Suppose thatx ∈ V1. Then
let p = z1, p′ = z2. It follows thatdeg(p) = deg(p′) = 2
and p′ is a clone ofp. Therefore, we may assume that
x ∈ V2. We may assume thatx = z1. Suppose that|V2| ≥
3. Then letp = z2, p′ = z3. It follows that deg(p) =
deg(p′) = 2 andp′ is a clone ofp. So we may assume that
|V2| = 2. From the above, it follows thatBi is isomorphic
to K2,2. Let p = y1, p′ = y2. It follows that deg(p) =
deg(p′) = 2 andp′ is a clone ofp.
Now the result follows from Lemma 3.4.

Thus, we may assume thatG does not have a leaf block of
the B2 type. Since ifq ≥ 2, G has at least two leaf blocks,
and hence at least one leaf block of theB2 type, we may
assume thatq = 1 and G = B1 is of the B1 type. First
suppose thatV (G) \ V (C) 6= ∅. Then it follows from the
definition of B1 that there exist two nodesx, x′ such that
deg(x) = deg(x′) = 2 and N(x) = N(x′). It follows from
Lemma 3.4 that there exists a good edge weighting forG.
So we may assume thatV (G) = V (C). Suppose first that
k = 5. Recall that it follows from the definition ofB1 that
G is a 5-cycle plus some arbitrary additional edges. Clearly,
no maximal matching has size1. Hence, since|V (G)| = 5,
it follows that every maximal matching inG has size exactly
2. Therefore,α(e) = 1/2 for all e ∈ E(G) is a good edge
weighting for G. So we may assume thatk = 7. Clearly, G
has no maximal matching of size1. It is also easy to see thatG
has no maximal matching of size2. Hence, since|V (G)| = 7,
it follows that every maximal matching inG has size exactly
3 and thereforeα(e) = 1/3 for all e ∈ E(G) is a good edge
weighting forG. This proves Theorem 3.1.

Lemma 3.6: |E(G)| ≤ 2|V (G)| for everyF -free graphG.
Proof: We may assume thatG is connected, because if

not, then the lemma follows from considering each connected
component ofG. We first claim that|E(B)| ≤ 2|V (B)| for
all B ∈ B1. Let B ∈ B1 and let C be a longest cycle in
B. It follows from the definition ofB1 that |V (C)| ∈ {5, 7}.
Clearly, we have|E(Bi)| ≤ |V (C)|+5+2(|V (Bi)\V (C)|) ≤
2|V (C)| + 2(|V (Bi)| − |V (C)|) = 2|V (Bi)|. This proves the
claim. Next we claim that|E(B)| ≤ 2|V (B)| − 2 for all B ∈
B2. If B is isomorphic toK4, then|E(B)| = 6 = 2|V (B)|−2.
If B is isomorphic toK2,t or K+

2,t for some t ≥ 1, then
|E(B)| ≤ 1 + 2(|V (B)| − 2) < 2|V (B)| − 2. This proves the
claim.

Now let G be anF -free graph and let{B1, B2, . . . , Bq} be
the block decomposition ofG. We prove by induction onq that
|E(G)| ≤ 2|V (G)|. If q = 1, it follows immediately from the
above that|E(G)| = |E(B1)| ≤ 2|V (B1)| = 2|V (G)|. Next,
let q ≥ 2. SinceG has at least two leaf blocks and at most one



block is inB1, we may choosei such thatBi is a leaf block and
Bi is of theB2 type. Letx be the unique cut-node ofG that
lies inBi. By induction, the graphG|(V (Bi)\{x}) has at most
2(|V (G)| − |V (Bi)| + 1) edges. From the above, sinceBi is
of theB2 type, it follows that|E(Bi)| ≤ 2|V (Bi)|−2. Hence,
we have|E(G)| ≤ 2(|V (G)|− |V (Bi)|+1)+2|V (Bi)|−2 =
2|V (G)|. This proves Lemma 3.6.

Lemma B.2:It can be decided inO(|V (B)|) time whether
a given graphB is of theB1 type.

Proof: We may assume that|E(B)| ≤ 2|V (B)|, because
if not, then it follows from Lemma 3.6 thatB is not of the
B1 type. Bodlaender [2] proved that, for any fixedk, finding a
cycle of length at leastk in a given graphH , if it exists, can
be done inO(k!2k|V (H)|) time. The following algorithm uses
Bodlaender’s algorithm multiple times to recognize graphsof
theB1 type.

(1) For p = 8, 7, 6, 5, do:

Check if B contains a cycle of lengthp or more. If
so, letF be the cycle and go to step (3).

(2) B does not contain a cycle of length5 or larger, and
henceB is not of theB1 type and we return NO.

(3) Let k = |V (F )|. If k ∈ {6, 8}, thenB is not of theB1

type and we return NO. Letf1, f2, . . . , fk be the nodes
of F in order. If k = 7, check that the ‘inner edges’ of
F are as in the definition ofB1. If not, B is not of the
B1 type and we return NO.
For i ∈ {1, 2, . . . , k}, do:

Let Ai be the nodes inV (B)\V (F ) that are adjacent
to exactlyfi−1 andfi+1. If |Ai| ≥ 1 anddeg(fi) 6=
2, thenB is not of theB1 type and we return NO.

If
∑k

i=1 |Ai| + |V (F )| < |V (B)|, thenB is not of the
B1 type and return NO.

(4) B is of theB1 type and we return YES.

It is not hard to verify that this algorithm takesO(|V (B)|)
time. This proves Lemma B.2.

Lemma B.3:It can be decided inO(|V (B)|) time whether
a given graphB is of theB2 type.

Proof: We may assume that|E(B)| ≤ 2|V (B)|, because
if not, then it follows from Lemma 3.6 thatB is not of theB2

type. Clearly, it can be checked in constant time whetherB is
isomorphic toK2, K3, K4, K2,2 or K+

2,2. So we may assume
thatB is either isomorphic toK2,t or K+

2,t for somet ≥ 3, or
B is not of theB2 type. LetX ⊆ V (B) be the set of nodes of
degree 2. If|X | 6= |V (B)| − 2, thenB is not of theB2 type
and we may stop. Otherwise, let{a1, a2} = V (B) \ X . We
need to check thatX is an independent set andX is complete
to {a1, a2}. If so, thenB is of theB1 type and we may stop.
If not, thenB is not of theB2 type and we may stop. Notice
that, since|E(B)| ≤ 2|V (B)|, the check above can be done
in O(|E(B)|) time. This proves Lemma B.3.

Theorem 3.2:It can be decided inO(|V (G)|) time whether
a network graphG satisfies OLoP under primary interference.

Proof: We may assume thatG is connected. By Theorem
3.1 and Theorem 3.3, it suffices to check whetherG admits the
structure described in Theorem 3.3. We propose the following
algorithm. Let n = |V (G)| and m = |E(G)|. First we
check thatm ≤ 2n, because otherwiseG is not F -free by
Lemma 3.6 and we stop immediately. Now, construct the block
decomposition{B1, B2, ..., Bq} of G. This can, in general, be
done in O(n + m) time (see e.g. [11]). However, since we
know thatm ≤ 2n, this step actually takesO(n) time. For
each blockBi, we test whetherBi is of theB2 type. This can
be doneO(|V (Bi)|) time by Lemma B.3. IfG has more than
one block that is not of theB2 type, thenG is not F -free
and we stop. If we encounter no such block, thenG is F -free
and we stop. So letB∗ be the unique block that is not of the
B2 type. It follows from Lemma B.2 that it can be decided in
O(|V (B∗)|) time whetherB∗ is of theB1 type or not. If it
is, thenG is F -free and we stop. If not, thenG is notF -free
and we stop. This proves Theorem 3.2.

APPENDIX C
FULL PROOFS OF THE RESULTS INSECTION IV

Lemma C.1:Let G be a bipartite graph with bipartition
X, Y . If |X | ≥ k anddeg(x) ≥ k for all x ∈ X , then every
maximal matching inG has size at leastk.

Proof: The proof is by induction onk. The lemma is
clearly true fork = 0. So let k ≥ 1. Let M be a maximal
matching inG. SinceX is not anticomplete toY , it follows
that M contains an edgexy with x ∈ X , y ∈ Y . Let M ′ =
M \{xy}, X ′ = X\{x}, Y ′ = Y \{y} andG′ = G|(X ′∪Y ′).
Clearly, M ′ is a maximal matching inG′, |X ′| ≥ k − 1 and
degG′(x′) ≥ k − 1 for all x′ ∈ X ′. Hence, it follows by
induction that|M ′| ≥ k − 1 and therefore that|M | ≥ k.

Lemma 4.2: Let G be a bipartite graph withµ(G) ≤ 4.
Thenσ(G) ≥ 2/3.

Proof: Write ν = ν(G) andµ = µ(G). It follows from
Lemma 4.1.(b)-(c) that we may assume thatdeg(v) ≥ 3 for
all v ∈ V (G). If µ ≥ 2

3ν, thenσ(G) ≥ 2
3 by Lemma 2.1. We

may therefore assume thatµ < 2
3ν.

Let V (G) = X ∪ Y such thatX and Y are independent
sets. LetM∗ be a maximal matching of sizeµ. Let A, B be
the set of nodes inX , Y , respectively, that are covered by
M∗. Let C = Y \ B andD = X \ A. SinceM∗ is maximal,
it follows that C is anticomplete toD. Moreover, by this and
the fact thatdeg(v) ≥ 3 for all v ∈ V (G), everyc ∈ C has at
least three neighbors inA, and everyd ∈ D has at least three
neighbors inB.

Let EAB, EAC , EBD be the edges betweenA and B, A
andC, andB andD, respectively. SinceC is anticomplete to
D, it follows thatE(G) = EAB ∪ EAC ∪ EBD.

We claim that:

|C|, |D| >
1

2
µ. (6)

Proof of the claim: Suppose to the contrary that|C| ≤ 1
2µ

and letM be a maximal matching inG. Let M1 = M ∩EAB ,



M2 = M ∩ EAC , M3 = M ∩ EBD. First, we have|M2| ≤
|C| ≤ 1

2µ. Second, since every edge inM1 ∪ M3 covers a
unique node inB, it follows that |M1 ∪ M3| ≤ |B| = µ.
Therefore,|M | ≤ 3

2µ. Since this is true for every maximal
matchingM , it follows that ν ≤ 3

2µ. But this means that
µ ≥ 2

3ν, contrary to our assumption. Hence,|C| > 1
2µ and,

by the symmetry, that|D| > 1
2µ. This proves the claim.

If µ ≤ 2, then, since every node inC has at least three
neighbors inA, it follows that|C| = 0, contrary to (6). Hence,
µ ∈ {3, 4}. It follows from (6) and ifµ = 3, then|C|, |D| ≥ 2,
and if µ = 4, then |C|, |D| ≥ 3. Define

α(e) =

{

1
µ

if e ∈ EAB

1
2µ

if e ∈ EAC ∪ EBD.

We need to prove that23 ≤
∑

e∈M α(e) ≤ 1 for every
maximal matchingM in G. So letM be a maximal matching
in G. Since every edge inM is incident with a node ofA∪B,
it is easy to see that

∑

e∈M α(e) ≤ 1. Let k = |M ∩ EAB|.
It suffices to show that|M ∩ EAC | ≥ µ − k − 1 and that
|M ∩ EBD| ≥ µ − k − 1, because if so, then

∑

e∈M

α(e) ≥ k ×
1

µ
+ 2 × (µ − k − 1) ×

1

2µ

=
µ − 1

µ
≥

2

3
, for µ ∈ {3, 4}.

From the symmetry, it even suffices to show that|M∩EAC | ≥
µ−k−1. To do so, letA′ be the nodes ofA that are not covered
by M . We may assume thatk < µ − 1, because otherwise
there is nothing to prove. Consider the graphG′ = G|(A′∪C).
Clearly, we have|C| ≥ µ−k−1, degG′(c) ≥ 3−k ≥ µ−k−1
for all c ∈ C. Moreover,M ∩ EAC is a maximal matching
in G′. Hence, it follows from Lemma C.1 that|M ∩EAC | ≥
µ − k − 1. This proves Lemma 4.2.

APPENDIX D
FULL PROOFS OF THE RESULTS INSECTION V

Observation 5.1:σ∗(Fk) ≤
(

2
3

)k
for all k ≥ 1.

Proof: Clearly, everyFk is vertex-transitive. Let us con-
siderF2. A maximum independent set inF2 can be constructed
by first choosing three non-consecutive 6-cycles and, next,
choosing three non-consecutive nodes from each of these
three 6-cycles. It is clear that this constitutes a maximum
independent set and its size is3×3 = 9. A minimum maximal
independent set inF2 can be constructed by choosing two
opposite 6-cycles and, next, choosing two opposite nodes from
each of these two 6-cycles. This gives a maximal independent
set of size2 × 2 = 4. SinceF2 is vertex-transitive, it follows
from a direct extension of Lemma 2.1 to interference graphs
that σ(F2) = 4/9 and henceσ∗(F2) ≤ 4/9. This reasoning
extends easily to the general case, where we haveν(Fk) = 3k

andµ(Fk) = 2k. Therefore,σ∗(Fk) ≤
(

2
3

)k
.


